Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение состояния идеального газа. Из рис. 2.2 и 2.3 следует, что формулы, выражающие соответствующие законы, упростятся, если перенести начало координат в точку с температурой –273º С





Из рис. 2.2 и 2.3 следует, что формулы, выражающие соответствующие законы, упростятся, если перенести начало координат в точку с температурой –273º С. Для этого введем новую шкалу температур и будем обозначать новую температуру Т, величину градуса оставим той же, что и в шкале Цельсия. Тогда

T = t + 273º,  

отсюда

.  

Запишем закон Шарля:

, . (2.1)

Аналогично для закона Гей-Люссака:

. (2.2)

Температура, введенная таким образом, называется абсолютной, а соответствующая температурная шкала – шкалой Кельвина, предложившего ее в 1848 г.

Из (2.1) и (2.2) при Т = 0 получается р = 0 и V = 0, чего, конечно, быть не может. Это неожиданное следствие получилось в результате применения рассмотренных законов для очень низких температур. Конечно, всякий реальный газ превратится в жидкость и затвердеет, прежде чем будет достигнута температура t = –273º C. Всякий физический закон имеет свои пределы применения.

Чтобы получить уравнение состояния идеального газа, рассмотрим некоторую массу газа m, которая занимает объем V 1, имеет давление P 1 и находится при температуре T 1. Пусть эта же масса газа в другом состоянии имеет объем V 2, давление P 2 и температуру T 2. Перевести этот газ в другое состояние легко, если он находится в цилиндре под поршнем.

Сначала, не меняя давление P 1, нагреем газ до температуры T 2, тогда он займет объем V' и этот объем по формуле (2.2) будет

. (2.3)

Для того чтобы перевести его в окончательное состояние , проведем изотермическое изменение объема, для которого

.  

Теперь подставим значение объема V' из (2.3):

.  

или

.  

Полученное для данной массы m соотношение указывает, что для любых двух состояний величина остается неизменной.

Обозначим это так:

. (2.4)

Это соотношение было получено французским инженером Клапейроном в 1834 г. Конечно, для другой массы газа постоянная величина В имеет другое значение.

Менделеев преобразовал уравнение Клапейрона, использовав закон Авогадро. Согласно этому закону при одинаковых давлениях и температурах объемы одного моля всех газов одинаковы. Таким образом, если

p1 = p2 и T1 = T2,  

то

,  

где – объем одного моля газа.

В частности, при нормальных условиях, т.е. при и Па объем одного моля любого газа равен .

Если соотношение (2.4) относить к одному молю, то постоянная В будет одинакова для любого газа. Обозначая ее через R, получим:

.  

Однако теперь в этой формуле – объем одного моля.

Итак,

.  

Это и есть уравнение состояния для определенной массы, именно для одного моля.

В такой форме оно было получено Менделеевым в 1875 г. и называется уравнением Клапейрона-Менделеева. Постоянная R называется универсальной газовой постоянной и является одной из основных физических констант.

Вычислим ее значение. Для этого рассмотрим 1 моль газа при нормальных условиях.

.  

Обобщим уравнение Клапейрона-Менделеева для произвольной массы идеального газа. Пусть газ с молярной массой μ взят в произвольном количестве, т.е. его масса m, а объем равен V. Величина определяет, сколько молей содержится в массе m. Объем одного моля , тогда объем массы m:

.  

Отсюда следует, что для массы m выражение будет в раз больше газовой постоянной R. Но остается постоянным при всех изменениях газа, следовательно, для массы m:

.  

или

.  

Эта формула связывает все четыре величины и употребляется во всех случаях, когда приходится иметь дело с газами.







Дата добавления: 2015-12-04; просмотров: 227. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия