Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энергия Гельмгольца





 

Работа процесса в общем случае, как это уже говорилось, зависит от пути процесса. Работа неравновесного процесса меньше, чем работа равновесного процесса, протекающего между теми же начальным и конечным состояниями системы. В самом деле, исходя из уравнения первого закона термодинамики (I, 2) и уравнения (II, 2), получаем в общем случае:

δW = dQ – dU £ TdS – dU (III, 1)

Величина правой части этого уравнения не зависит от того, равновесен или неравновесен процесс. В случае равновесного процесса:

d W = dW равн. = TdS – dU (III, 1а)

Для неравновесного процесса:

dW < TdS – dU (III, 1б)

Сравнивая уравнения (III, 1а) и (III, 1б), получаем:

dWравн. > dW

Таким образом, работа равновесного процесса максимальна.

Максимальная работа не зависит от пути, а определяется лишь начальным и конечным состояниями системы. Так, при S = const (равновесный адиабатный процесс)

dW = – dU и W макс. = U 1U 2

т. е. величина максимальной работы определяется изменением внутренней энергии системы.

Интегрируя при постоянной Т уравнение (III, 1а), получаем:

W макс. = T (S 2S 1) – (U 2U 1) (III, 2)

или

W макс. = (U 1TS 1 ) – (U 2TS 2) (III, 2а)

Выражения, стоящие в скобках, являются функциями состояния системы. Введя в уравнение (III, 2а) обозначение

F º U – TS (III, 3)

получаем (при T = const)

W макс. = F 1F 2 = –D F (III, 4)

где F – функция состояния, называемая энергией Гельмгольца. Таким образом, максимальная работа при изохорно-изотермических равновесных процессах равна убыли энергии Гельмгольца системы.

Переписав уравнение (III, 3) в виде

U = F + TS

можно рассматривать внутреннюю энергию, как состоящую из двух частей – свободной энергии F и связанной энергии TS. Лишь часть внутренней энергии – свободная энергия, которую система отдает вовне при T = const, может превратиться в работу (условием для такого превращения является равновесность процесса; в неравновесном процессе свободная энергия частично или полностью переходит в теплоту). Другая часть внутренней энергии – связанная энергия – при изменении системы при Т = const не дает работы, а переходит только в теплоту:

Энтропия есть, таким образом, фактор ёмкости связанной энергии.

Для процессов, протекающих с изменением температуры (T const), деление внутренней энергии на свободную и связанную не может быть проведено и, следовательно, сами термины не имеют общего значения. Поэтому будем пользоваться для функции F названием энергия Гельмгольца.

Полный дифференциал функции F можно получить, дифференцируя уравнение (III, 3):

dF º dUTdSSdT (III, 5)

Сопоставив это уравнение с уравнениями (III, 1а) и (III, 1б), получим в общем виде:

dF £ -SdT – dW (III, 5а)

Откуда при Т = const

(dF)T £ –dW (III, 6)

или

F 2 – F l = DF < -W; F l – F2 > W (III, 6a)

Выражение (III, 6a) отражает уже известное нам положение, что работа неравновесного процесса меньше работы равновесного процесса.

Если при равновесном процессе совершается только работа расширения (dW = PdV), то из уравнения (III, 5а) получаем:

dF = -SdT – PdV (III, 7)

Это выражение является полным дифференциалом функции F при переменных V и Т.

Полагая T = const и V = const, а также при условии отсутствия всех видов работы (dW = 0), получаем из уравнения (III, 5а):

( F)V, T £ 0

т. е., энергия Гельмгольца системы, находящейся при постоянных V и Т не изменяется при равновесных процессах, при неравновесных процессах ее значение убывает.

Так как система, в которой протекают (и могут протекать) только равновесные процессы, бесконечно близка к равновесию, то сформулированные свойства энергии Гельмгольца позволяют судить о том, находится ли данная система в равновесии или нет. В последнем случае направление неравновесного процесса определяется убылью энергии Гельмгольца при постоянных температуре и объеме системы.

Условия, которым должны удовлетворять процессы, для того чтобы по изменениям величины F можно было судить о направлении этих процессов, иные, чем для энтропии. Для энтропии это были условия постоянства внутренней энергии и объема (изолированная система), для энергии Гельмгольца это условие постоянства объёма и температуры – легко измеримых параметров системы. Энергия Гельмгольца, являясь производным понятием по отношению к энтропии, представляет собой практически более удобный критерий направления процессов, чем энтропия.

Изложенные соображения могут быть выражены следующим положением: энергия Гельмгольца системы, находящейся при постоянных объёме и температуре, стремится уменьшиться при неравновесных (самопроизвольных) процессах. Когда она достигает минимального значения, совместимого с данными V и Т, система приходит в состояние равновесия.

 

 

 







Дата добавления: 2015-12-04; просмотров: 247. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия