Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема о производной обратной ф-ции





Пусть ф-ция строго монотонна и непрерывна в некоторой окрестности точки х. Пусть, кроме того, это ф-ция дифференцируема в указанной точке х и f ‘(x)≠0. Тогда в некоторой окрестности соответствующей точки y=f(x) определена обратная для y=f(x) ф-ция x=f-1(y), причем указанная обратная ф-ция дифференцируема в соответствующей точке y=f(x) и для ее производной в этой точке справедлива формула (*) {f-1(y)} ‘ = .

Док-во

1) Предварительно напомним условие теоремы об обратной ф-ции: Пусть ф-ция y=f(x)возрастает (убывает) и непрерывна на сегменте [a,b], и пусть 𝛼=f(a),𝛽=f(b). Тогда на сегменте [𝛼, 𝛽] (соответственно на сегменте [𝛽, 𝛼]) определена обратная для y=f(x)ф-ция x=f-1(y), которая возрастает (убывает) и непрерывна указанном сегменте (*).

2) Т.к. ф-ция y=f(x) строго монотонна и непрерывна и непрерывна в некоторой окрестности данной точки х, то в силу (*) обратная ф-ция x=f-1(y) определена, строго монотонна и непрерывна в некоторой окрестности соответствующей точки y=f(x).

3) Придадим аргументу этой обратной ф-ции в указанной точке произвольное достаточно малое и отличное от нуля приращение ∆y.

4) Этому приращению ∆y отвечает приращение ∆х=f-1(y+∆y) – f--1(y)обратной ф-ции в соответствующей точке y=f(x), причем в силу строгой монотонности обратной ф-ции указанное приращение ∆х отлично о нуля.

5) Это дает нам право написать следующее тождество (**): =

6) Пусть теперь в тождестве (**) приращение ∆у→0

7) Тогда в силу разности формы условия непрерывности обратной ф-ции x=f-1(y) в соответствующей точке y=f(x) приращение этой ф-ции ∆х также стремится к нулю

8) Убедимся в том, что в таком случае ∃ предел правой части (**), равный величине, стоящей в правой части (*).

9) Этим будет доказано, что тот же самый предел имеет и левая часть (**), т.е. будет доказано, что обратная ф-ция имеет производную в соответствующей точке y=f(x) и для этой производной справедливо равенство (*).

10) jимеет предел при ∆х→0 равный , где х – данная точка.

11) Т.к. x=f_1(y), ∆х=f_1(y+∆y) – f_1(y), т х+∆х=f_1(y+∆y), т.е. y+∆y=f(х+∆х) и ∆y=f(x+∆x) --f(x)

12) Отсюда следует, что права часть (**) может быть переписана в виде .

13) Из последнего равенства в силу определения производной f ‘(x) и предположения f ‘(x)≠0 сражу же вытекает, что предел при ∆х→0 правой части (**) ∃ и равен . ;

 







Дата добавления: 2015-06-15; просмотров: 385. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия