Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывные ф-ции. Простейшие свойства непрерывных ф-ций





Пусть f(x) – числовая ф-ция, определенная на подмножестве Х множества R.

Опр. Если x0-предельная точка множества Х, x0∈X и s w:ascii="Cambria Math" w:h-ansi="Cambria Math"/><wx:font wx:val="Cambria Math"/><w:i/><w:lang w:val="EN-US"/></w:rPr><m:t>x</m:t></m:r></m:e></m:d></m:e></m:func></m:oMath></m:oMathPara></w:p><w:sectPr wsp:rsidR="00000000"><w:pgSz w:w="12240" w:h="15840"/><w:pgMar w:top="1134" w:right="850" w:bottom="1134" w:left="1701" w:header="720" w:footer="720" w:gutter="0"/><w:cols w:space="720"/></w:sectPr></w:body></w:wordDocument>"> =f(x0), то ф-ция f(x) называется непрерывной в точке x0.

f(x)-непрерывная в точке x0∈X ↔ ∀ε>0 ∃ δ=δε:∀x∈X удовлетворяющих условию |x-x0|<δε выполняется неравенство |f(x)-f(x0)|<ε.

 

Опр. Ф-ция f(x) называется непрерывной на множестве Х, если она непрерывна в каждой точке х∈Х.

Опр. Точка х0∈Х, в которой ф-ция f(x) непрерывна, называется точкой непрерывности ф-ции f(x). Точка х0∈Х, не являющаяся точкой непрерывности ф-ции f(x), называется точкой разрыва ф-ции f(x).

 

Теорема.

Пусть f(x) и g(x) – ф-ции с общей областью определения Х, непрерывные в точке х0. Тогда в этой токе непрерывны следующие ф-ции: f(x)±g(x),: f(x)g(x),: f(x)/g(x) (в последнем случае предполагается, что g(x) ≠0 при х∈Х).

Док-во следует из определения непрерывной ф-ции и теоремы об арифметике пределов ф-ции.

 

Теорема (о локальной ограниченности непрерывной ф-ции)

Пусть ф-ция f(x) определена в окрестности точки х0 и непрерывна в точке х0, тогда ∃ окрестность |x-x0|<𝛿 этой точки, в которой ф-ция f(x) ограничена.

Док-во

В силу определения непрерывности ф-ции f(x) в точке х0 ∀ε>0 ∃δ=δε >0: |f(x)-f(x0)|<ε при |x-x0|<δε.

Фиксируя произвольное ε>0, получим что f(x0)- ε<f(x)<f(x0)+ε при |x-x0|<δ

Т.е. ф-ция f(x) ограничена в окрестности |x-x0|<δ. ;

 

Теорема (о непрерывности сложной ф-ции)

Пусть ф-ция f(x) непрерывна в точке x0, а ф-ция φ(t) непрерывна в точке t0=f(x0). Тогда сложная ф-ция y= φ(f(x)) непрерывна в точке х0.

 







Дата добавления: 2015-06-15; просмотров: 388. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия