Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерий Коши сходимости последовательности





 

Для того чтобы последовательность сходилась, необходимо и достаточно, чтобы она была фундаментальной.

Док-во.

Необходимость. если , то для любого существует , такое, что для всякого имеем .

Следовательно, для любых

.

Поэтому - фундаментальная последовательность.

Достаточность. По условию последовательность является фундаментальной.

1. Докажем, что ограничена. В самом деле, возьмем =1. Тогда найдется n0=n0(1) такое, что для всех имеем . Но тогда . Отсюда .

2. В силу теоремы Больцано-Вейерштрасса существует сходящаяся подпоследовательность при . Условие её сходимости можно записать так: такое что имеем . Пусть и . Тогда для всех n>N и nk>N имеем , т.е. последовательность сходится. ;

№20 Вычисление пределов (qn),( ), ( ),( ). xn=qn

→∞ 1) α>0, xn=1+ αn→+∞: для любого Ε: 1+ αn> Ε => n>(E-1)/α => N=[(E-1)/α]+1.

2) q>1, xn=qn→∞: q=1+α, где α>0: qn=(1+α)n≥1+ αn (lim1+αn→∞)

→0 1) q<1. Если q=0, то очевидно. Если 0<|q|<1, то (1/q)>1, (1/q)n→+∞ =>qn=1/1/qn→0.

.

 







Дата добавления: 2015-06-15; просмотров: 521. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия