Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема о переходе к пределу в неравенстве





Если для двух переменных xn, yn всегда выполняется неравенство xn ≥ yn, причем каждая их них имеет конечный предел: limxn=a, limyn=b, то и a≥b.

Допустим противное: пусть a<b. Возьмем число r между a и b, так что a<r<b. Тогда, содной стороны, найдется такой номер N′, что для n>N′ будет xn<r, с другой же – найдется и такой номер N″, что для

n> N″ окажется yn>r. Если N больше обоих чисел N′, N″, то для номеров n>N будут одновременно выполнятся оба неравенства xn<r, yn>r, откуда xn<yn, что противоречит предположению. Теорема доказана

Теорема. I Если при х→А функция f(x) имеет конечный положительный (отрицательный) предел, то и сама функция положительна (отрицательна), по крайней мере для значений х, достаточно близких к А, но отличных от А.

II. пусть функция на множестве X, непрерывна в точке а этого множества и ее значение положительно (отрицательно). Тогда существует такое положительное число δ, что функция является положительной (отрицательной) всюду на множестве , представляющем собой пересечение множества X с δ-окрестностью точки a.

Док-во: в силу определения непрерывности по Коши для любого положительного числа найдется отвечающееему положительное число δ такое, что для всех значений аргумента x из δ-окрестности точки a справедливо равенство или . Если взять в качестве ℇ положительное число , то оба числа и будут положительны при и отрицательны при . Поэтому неравенства будут означать, что для всех значений аргумента из δ-окрестности точки a функция является положительной при и . Теорема доказана!

 







Дата добавления: 2015-06-15; просмотров: 1025. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия