Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость вверх, вниз; точки перегиба. Достаточное условие выпуклости для дважды дифференцируемых ф-ций





Ф-ция выпукла вверх в точке x0, если

 

Выпуклость вверх

График дифференцируемой ф-ции call выпуклым вниз на интервале (a;b), если он расположен выше ∀ ее касательной на этом интервале.

Выпуклость вниз

График дифференцируемой ф-ции call выпуклым вниз интервале (a;b), если он расположен ниже ∀ касательной на этом интервале.

 

Точка графика непрерывной ф-ции , отделяющая его части разной выпуклости, call точкой перегиба.

 

Теорема (о достаточном условии выпуклости для дважды дифференцируемых ф-ций)

 

Если ф-ция во всех точках интервала (a;b) имеет отрицательную вторую производную, т.е., то график ф-ции в этом интервале выпуклый вверх. Если же, ∀x∈(a;b) – график выпуклый вниз.

Док-во

Пусть , ∀x∈(a;b).

Возьмем на графике ф-ции произвольную точку M с абсциссой x0∈(a;b) и проведем ч/з М касательную (см рис)

Покажем, что график ф-ции расположен ниже этой касательной.

Для этого сравним в точке х∈(a;b) ординату y кривой с ординатой y кас ее касательной.

Как известно уравнение касательной т.е. .

Тогда,

По теореме Лагранжа

Поэтому

Разность снова преобразуем по формуле Лагранжа:

Т.О., получаем

Исследуем это равенство:

Если x> , то . Следовательно, т.е. y<yкас:

< < <

Если x<x0, то . Следовательно,

> > >

Итак, доказано, что во всех точках интервала (a;b) ордината касательной больше ординаты графика, т.е. график ф-ции выпуклый вверх.

Аналогично доказывается, что при ;

 

№60 Асимптоты ф-ций. Общая схема исследования ф-ции и построение ее графика.(вставить рис)

 

Опр. Асимптотой кривой call прямая, расстояние до которой от точки, лежащей на кривой, стремиться к нулю при неограниченном удалении от начала координат этой точки по кривой.

Асимптоты бывают

Вертикальными

Наклонными

Горизонтальными.

Вертикальные асимптоты.

t wx:val="Cambria Math"/><w:i/><w:lang w:val="EN-US"/></w:rPr><m:t>a</m:t></m:r></m:oMath></m:oMathPara></w:p><w:sectPr wsp:rsidR="00000000"><w:pgSz w:w="12240" w:h="15840"/><w:pgMar w:top="1134" w:right="850" w:bottom="1134" w:left="1701" w:header="720" w:footer="720" w:gutter="0"/><w:cols w:space="720"/></w:sectPr></w:body></w:wordDocument>"> - вертикальная асимптота графика ф-ции , если , или s w:ascii="Cambria Math" w:h-ansi="Cambria Math"/><wx:font wx:val="Cambria Math"/><w:i/></w:rPr><m:t>x</m:t></m:r></m:e></m:d><m:r><w:rPr><w:rFonts w:ascii="Cambria Math" w:h-ansi="Cambria Math"/><wx:font wx:val="Cambria Math"/><w:i/></w:rPr><m:t>=в€ћ</m:t></m:r></m:e></m:func></m:oMath></m:oMathPara></w:p><w:sectPr wsp:rsidR="00000000"><w:pgSz w:w="12240" w:h="15840"/><w:pgMar w:top="1134" w:right="850" w:bottom="1134" w:left="1701" w:header="720" w:footer="720" w:gutter="0"/><w:cols w:space="720"/></w:sectPr></w:body></w:wordDocument>"> , или .

Действительно, в этом случае непосредственно из рис видно, что расстояние от точки М(x;y) кривой от прямой равно .

Если x→a, то d→0. Согласно определению асимптоты, прямая является асимптотой кривой

Для отыскания вертикальных асимптот нужно найти те значения х в близи которых ф-ция неограниченно возрастает по модулю. Обычно это точки разрыва второго рода.

 

Наклонная асимптота

Уравнение наклонной асимптоты будем искать в виде , где . Причем, если хотя бы один из пределов не ∃ или равен ∞, то кривая асимптоты не имеет. В частности, если к=0, то поэтому – уравнение горизонтальной асимптоты.

Замечание: Асимптоты графика ф-ции могут быть разными, поэтому при нахождении пределов следует отдельно рассматривать случай, когда

 

Общая схема исследования ф-ции и построение ее графика

Найти .

Найти (если это можно) точки пересечения графика с осями координат.

Найти интервалы знакопостоянства ф-ции (промежутки, на которых f(x)>0 или f(x)<0).

Выяснить, является ли ф-ция четной, нечетной или общего вида.

Найти асимптоты графика ф-ции.

Найти монотонности ф-ции.

Найти экстремумы ф-ции.

Найти интервалы выпуклости и точки перегиба графика ф-ции.

По результатам исследования строим график.

 







Дата добавления: 2015-06-15; просмотров: 564. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия