Разность широт и долгот
Географические координаты — широта и долгота — однозначно определяют положение конкретной точки земной поверхности. Переход от одной точки земной поверхности к другой сопровождается изменением их географических координат. Точки, лежащие на одной параллели, имеют одинаковую широту и разные долготы. Точки, расположенные на одном меридиане, имеют одну и ту же долготу и различные широты. В общем случае две точки, не находящиеся на одном меридиане или на одной параллели, имеют разные широты и разные долготы. В практике кораблевождения часто необходимо знать, как изменились или изменятся географические координаты при переходе из одной точки земной поверхности в другую, и уметь вычислять эти изменения. Величинами, характеризующими изменение географических координат при переходе от одной точки земной поверхности к другой, являются разность широт и разность долгот. Разностью широт (РШ) двух точек на поверхности Земли называется дуга меридиана, заключенная между параллелями этих точек. Для вычисления разности широт пользуются формулой РШ = φ2 - φ1, принимая во внимание при этом знаки + и - соответственно их наименованию. Действительно, на рисунке видно, что изменение широты (РШ) при переходе корабля из точки А в точку Б характеризуется дугой А'Б, численно равной разности дуг меридианов точек прихода Б и отхода А, определяемых соответственно широтами φБ и φА. Рассчитанной по формуле разности широт приписывается знак плюс, если она совершена к N, и знак минус, если разность широт совершена к S. Разность широт может изменяться от 0 до ±180°. Разность долгот (РД), характеризующая изменение долготы, как видно из рисунка, представляет собой центральный угол между меридианами двух точек. Этот угол измеряется дугой экватора между указанными меридианами. На этом основании разностью долгот двух точек на поверхности Земли называется меньшая из дуг экватора, заключенная между меридианами этих точек. Из этого определения следует, что разность долгот может иметь значения от 0 до ±180°. С учетом ранее принятых обозначений (для восточной долготы знак плюс и для западной — минус) можно написать формулу для вычисления РД двух точек: РД = λ2 - λ1 Разность долгот будет иметь знак плюс, если она совершена к Ost, и знак минус, если она совершена к W. Указанное правило имеет следующий геометрический смысл: если меридиан пункта прихода λ 2 располагается восточнее меридиана пункта отхода λ 1, значит, разность долгот сделана к Оst и ей приписывается знак плюс. И наоборот, когда меридиан пункта прихода расположен западнее меридиана пункта отхода, разность долгот сделана к W и ей приписывается знак минус. При решении задачи на расчет РД по формуле может получиться результат, превышающий 180°. В этих случаях для нахождения меньшей из дуг экватора полученный результат следует вычесть из 360° и изменить знак (наименование) его на обратный. 5 Зональная система прямоугольных координат Гаусса – Крюгера В проекции Гаусса вся поверхность Земли условно разделена на 60 зон меридианами, проведенными через 6o; форма зоны - сферический двуугольник; счет зон ведется от Гринвичского меридиана на восток. Средний меридиан зоны называется осевым; долгота осевого меридиана L0 любой зоны в восточном полушарии подсчитывается по формуле: L0=6o*n - 3o (1.7) а в западном - по формуле: L0=360o - (6o*n - 3o), где n - номер зоны.
Представим себе, что земной эллипсоид вписан в эллиптический цилиндр. Ось цилиндра расположена в плоскости экватора и проходит через центр эллипсоида (рис. 1.10). Цилиндр касается эллипсоида по осевому меридиану данной зоны. Вся поверхность зоны проектируется на поверхность цилиндра нормалями к эллипсоиду так, что изображение малого участка на цилиндре подобно соответствующему участку на эллипсоиде. Такая проекция называется конформной или равноугольной; в ней углы не искажаются, а длины линий искажаются по закону: где: ΔS - величина искажения линии, S - длина линии на эллипсоиде, Y - удаление линии от осевого меридиана, R - средний по линии радиус кривизны эллипсоида. Для территории нашей страны искажения длин линий находятся в допустимых пределах для карт масштабов 1/10000 и мельче; для карт масштаба 1/5000 и крупнее приходится применять трехградусные зоны Гаусса. Поверхность цилиндра разрезается и развертывается на плоскости; при этом осевой меридиан и экватор изображаются в виде двух взаимно перпендикулярных прямых линий. В точку их пересечения помещают начало прямоугольных координат зоны. За ось OX принимают изображение осевого меридиана зоны (положительное направление оси OX - на север), за ось OY принимают изображение экватора (положительное направление оси OY - на восток). При координате Y впереди пишут номер зоны; для исключения ее отрицательных значений условились, что в начале координат значение координаты Y равно 500 км.
|