Виды матриц
1. Прямоугольные: m и n - произвольные положительные целые числа 2. Квадратные: m=n 3. Матрица строка: m=1. Например, (1 3 5 7) - во многих практических задачах такая матрица называется вектором 4. Матрица столбец: n=1. Например 5. Диагональная матрица: m=n и aij=0, если i≠j. Например 6. Единичная матрица: m=n и 7. Нулевая матрица: aij=0, i=1,2,...,m j=1,2,...,n 8. Треугольная матрица: все элементы ниже главной диагонали равны 0. Пример. 9. Симметрическая матрица: m=n и aij=aji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательно A'=A Например, 10. Кососимметрическая матрица: m=n и aij=-aji (т.е. на симметричных относительно главной диагонали местах стоят противоположные элементы). Следовательно, на главной диагонали стоят нули (т.к. при i=j имеем aii=-aii) Пример. Ясно, A'=-A 11. Эрмитова матрица: m=n и aii=-ãii (ãji - комплексно - сопряженное к aji, т.е. если A=3+2i, то комплексно - сопряженное Ã=3-2i) Пример
|