Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ И ЕГО ПРИЛОЖЕНИЕ К ПОСТРОЕНИЮ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ





 

Классическая математика учит действиям над числами, которые заданы точно, тогда как в подавляющем большинстве случаев, величины, с которыми приходится иметь дело на практике, получают с помощью измерений и потому соответствующие им числа лишь приближенно выражают точные, но неизвестные нам значения реальных величин. Для повышения их точности стремятся сделать как можно больше измерений. Итак, требуется как можно лучше оценить «истинное значение» некоторой величины х, для чего проводится n прямых измерений, результаты которых представлены системой уравнений:


Здесь - результаты измерений, а - их ошибки.

По методу наименьших квадратов наилучшим приближенным значением для х является такое число, для которого минимальна сумма квадратов отклонений от , т.е. сумма квадратов ошибок :

. (6.1)

Для определения точки экстремума этой функции, как обычно, находим производную и приравниваем её к нулю , откуда

, (6.2)

 

поскольку – квадратный трёхчлен относительно и , то в точке экстремума функция достигает наименьшего значения.

Итак, модель (6.2) показывает, что в рассматриваемом случае метод наименьших квадратов и выбор среднего арифметического значения результатов измерений эквивалентны, что служит подтверждением практической полезности метода наименьших квадратов.







Дата добавления: 2015-04-16; просмотров: 449. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия