МЕТОД НАИМЕНЬШИХ КВАДРАТОВ И ЕГО ПРИЛОЖЕНИЕ К ПОСТРОЕНИЮ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ
Классическая математика учит действиям над числами, которые заданы точно, тогда как в подавляющем большинстве случаев, величины, с которыми приходится иметь дело на практике, получают с помощью измерений и потому соответствующие им числа лишь приближенно выражают точные, но неизвестные нам значения реальных величин. Для повышения их точности стремятся сделать как можно больше измерений. Итак, требуется как можно лучше оценить «истинное значение» некоторой величины х, для чего проводится n прямых измерений, результаты которых представлены системой уравнений:
По методу наименьших квадратов наилучшим приближенным значением для х является такое число, для которого минимальна сумма квадратов отклонений от , т.е. сумма квадратов ошибок : . (6.1) Для определения точки экстремума этой функции, как обычно, находим производную и приравниваем её к нулю , откуда , (6.2)
поскольку – квадратный трёхчлен относительно и , то в точке экстремума функция достигает наименьшего значения. Итак, модель (6.2) показывает, что в рассматриваемом случае метод наименьших квадратов и выбор среднего арифметического значения результатов измерений эквивалентны, что служит подтверждением практической полезности метода наименьших квадратов.
|