ОБОБЩЕННОЕ РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
Кажется, что еще можно сказать о системе линейных алгебраических уравнений, когда известно множество методов ее решения. И всё же …. Если решать задачу, линейная модель которой описывает некоторую реальную ситуацию, то здесь могут встретиться различные осложнения, хотя бы потому, что коэффициенты системы, включая и правые части, получают с помощью измерений и по этой причине они являются приближенными числами. Для повышения их точности стремятся сделать как можно больше измерений. Но именно это приводит к переопределенной системе уравнений, не имеющей решения в классическом смысле. Однако подобные задачи выдвигаются практикой и потому необходимо иметь такие их математические модели, которые позволяют получать неклассические, обобщенные решения. Итак, требуется как можно лучше оценить «истинное значение» некоторой величины х, для чего проводятся n прямых измерений, результаты которых представлены несовместной системой уравнений , (5.1) где результат -го измерения. Используя всю имеющуюся экспериментальную информацию, сложим почленно уравнения системы, тогда получим , т.е. . (5.2) Укажем практическую оценку среднего арифметического (5.2) по числу значащих цифр. Самый простой способ состоит в сравнении среднего арифметического с результатами отдельных измерений. Среднее значение округляют, сохраняя слева все цифры, остающиеся неизменными или почти неизменными во всех отдельных измерениях, а все остальные отбрасываются. Рассмотрим пример: пусть неизвестная величина измерена пять раз [44, с. 385]: х1 = 4,781; х2 = 4,795; х3 = 4,769; х4 = 4,792; х5 = 4,779, среднее арифметическое которых равно 4,7832. Возникает вопрос: какие цифры найденного среднего следует сохранить? Цифра 4 целых в среднем арифметическом значении и во всех результатах отдельных измерений совпадает и должна быть сохранена, как надёжная. То же самое относится и к цифре 7, находящейся в разряде десятых. Цифра 8 в разряде сотых среднего арифметического незначительно отличается от цифр сотых отдельных измерений и сохраняется как значащая. Остальные отбрасываются. Итак, ответ с точностью до трёх значащих цифр: х = 4,78. Система линейных алгебраических уравнений может оказаться несовместной с точки зрения классической математики и тогда, когда существует, например, решение такой реальной задачи: энергетический и коксующийся уголь добывают на трех участках шахты, причем средние затраты на 1 тонну его и процентное распределение добычи дано в таблице 5.1. Таблица 5.1
Оцените объективно обусловленные стоимости одной тонны энергетического и одной тонны коксующегося угля. Обозначим через и стоимости 1т соответственно энергетического и коксующегося угля, тогда на основании данных таблицы получим систему уравнений: (5.3) Решая совместно два первых уравнения этой системы найдем: х = 9,1, = 12,9, а, подставив эти значения в третье уравнение придём к противоречию. Это означает, что система трех уравнений с двумя неизвестными несовместна, однако, учитывая возможность погрешностей в числовых данных и существование экономически обусловленных цен как 1т энергетического, так и 1т коксующегося угля, будем искать способ определения этих цен. Для того, чтобы они лучше учитывали фактические затраты на угледобычу в данных условиях, нужно использовать всю информацию, которая содержится в системе (5.3). Если, как в случае системы (5.1), сложить почленно все уравнения системы (5.3), то получим одно уравнение с двумя неизвестными, а их нужно два, причём таких, при которых система будет иметь в классическом смысле единственное решение. Проще всего поступить так: сложить почленно первые два уравнения системы (5.3) и сохранить третье, тогда придём к системе: решая которую, находим: х = 9, у = 14. Отметим, что существует афоризм: чистая математика делает то, что можно, так, как нужно, а прикладная наоборот: то, что нужно – так, как можно, а с практической точки зрения – даже и так, как нужно.
|