Методы упрощения моделей
Когда полученная математическая модель является сложной, т.е. неразрешимой, разработчик прибегает к ее упрощению и использованию более глубокой абстракции. В практических задачах исследования процессов функционирования сложных систем часто желателен обратный процесс — процесс расширения модели. При этом начинают с построения простой модели, а затем усложняют ее. Эволюционный характер процесса конструирования модели упрощает решение поставленной задачи. Сначала решаются более простые задачи с помощью простой модели, а затем ставятся более сложные задачи, что требуют достижения большего соответствия между моделью и реальным объектом, что приводит к усложнению модели. В обеих случаях возникает необходимость упрощения математических моделей объекта. Наиболее распространенными являются следующие методы упрощения моделей: 1) расчленение сложной системы на ряд более простых подсистем (декомпозиция); 2) выделение существенных свойств и воздействий и учет остальных в параметрической форме (метод макромоделирования); 3) линеаризация нелинейных процессов в некоторой области изменения переменных; 4) приведение систем с распределенными параметрами к системам c сосредоточенными параметрами (введение более жестких предположений и ограничений); 5) пренебрежение динамическими свойствами процессов. Декомпозиция. В общем случае конечной целью декомпозиции является разбиение пространства переменных объекта (рис.1.4.) {y1, y2,..., yn, u1, u2,..., ur, x1, x2,..., xm, z1, z2,..., zl} нa q подпространств меньших размерностей, в которых учитывается только связь данного выхода yi с соответствующими переменными. Если любой выход имеет связь с остальными выходами, то декомпозиция практически невозможна. Макромоделирование. При использовании метода макромоделирования в исходном пространстве переменных оставляются (т.е. учитываются) только те из них, которые влияют на выходные переменные наиболее сильно. Остальные неучтенные воздействия могут быть учтены в параметрической форме путем изменения коэффициентов при учтенных переменных (в случае мультипликативных воздействий) либо путем в ведения свободных членов (для аддитивных воздействий). Линеаризация. Линеаризация исходной нелинейной модели облегчает решение конкретной задачи исследования. Поэтому для упрощения моделирования и исследования, когда это возможно, желательно заменить нелинейное уравнение приближенным линейным, решение которого с достаточной степенью точности описывает свойство исходной нелинейной системы. Процесс замены нелинейной модели линейной называется линеаризацией. Если дифференциальное уравнение объекта нелинейно из-за нелинейности его статической характеристики, то для линеаризации уравнения необходимо заменить нелинейную статическую характеристику y = F(x) линейной функцией y = a0 + a1x. Основное содержание идеи линеаризации состоит в том, что различие в решениях нелинейных уравнений и их линеаризованного представления не столь существенны, чтобы приводить к недопустимым ошибкам в смысле требований к точности решения поставленной задачи. Упрощение модели с распределенными параметрами. Характеристики состояния объекта могут зависеть не только от времени, но и от пространственных координат. Из множества объектов с распределёнными параметрами можно выделить объекты, параметры которых приводимы к сосредоточенным. Это такие объекты, для которых достаточно знать значения входных и выходных переменных в конечном числе фиксированных точек пространства. Например, линейные объекты с распределёнными параметрами структурно могут быть представлены в виде многомерного линейного объекта с сосредоточенными параметрами. Тогда процессы в таких объектах будут описаны совокупностью математических моделей, определяющих изменения только во времени исследуемых выходных величин объектов в каждой фиксированной точке пространства.
|