Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рассмотрим физическое подобие





Теперь введем понятие физически подобных объектов (систем, процессов и т.п.), как обобщение подобия геометрического. Два объекта называются физически подобными, если при заданных характеристиках одного можно получить соответствующие характеристики другого простым пересчетом, аналогичным пересчету при геометрическом подобии.

Приведем пример. Для этого рассмотрим два геометрически подобных, однородных тела с одной и той же объемной плотностью , объемами и . Тогда , где и – массы тел. Значит, , т.е. при заданной массе одного тела можно получить соответствующую массу другого простым пересчетом, аналогичным пересчету при геометрическом подобии. Значит, два тела физически подобны по массе.

Достаточным условием подобия двух объектов является равенство двух любых соответствующих критериев подобия, составленных из определяющих параметров, а так же начальных и граничных условий. Поэтому для того, чтобы создаваемый объект или имитируемое явление были подобны модели достаточно:

1) выбрать определяющие объект или явление величины и составить из них независимые критерии подобия;

2) выбрать параметры натуры так, чтобы ее критерии были такие же, как и у модели: , где – число всех независимых критериев подобия, при этом индекс м относится к модели, н – к натуре.

При исследовании подобных явлений большое значение имеет так называемая (пи) - теорема. Функциональная зависимость между характеризующими объект или процесс величинами может быть представлена в виде зависимости между составленными из них критериями подобия:

. (9.1)

Вид зависимости (9.1) непосредственно следует из равенства (8.6), если в последнем обе части разделить на и ввести для критерия обозначение .

Использование – теоремы дает определенные преимущества при экспериментальном исследовании. Применяя безразмерные комплексы величин, полученные результаты можно распространить на все подобные явления, уменьшить число величин, которые следует связать функциональной зависимостью. Особенно легко находится эта зависимость, если критерий один (независимых от него, нет). Тогда функциональная зависимость имеет вид: т.е. в этом случае анализ размерностей позволяет получить полное решение задачи с точностью до постоянной, которая может быть найдена из эксперимента.

Так, длина окружности l определяется eе радиусом и из двух этих величин можно образовать только один безразмерный комплекс поэтому функциональная зависимость имеет вид

; c, как показано выше, легко может быть определена экспериментально и (точно 2 ).

Теперь определим период колебания математического маятника (рисунок 8.1).

Период Т будет однозначно определен, если задать g, l, и начальные условия при t =0, φ=φ;0 и . Таким образом, период колебаний маятника является функцией Т = F(g,l,φ0) (силами сопротивления пренебрегаем). Простые преобразования, приведенные в п.8.3, показывают, что

, (9.2)

где - единственный определяющий критерий подобия, так как только этим критерием определяется выражение f () , т.е. период колебаний. В формуле (9.2) критерий является определяющим, других определяющих критериев нет. Поэтому, если и при для модели и натуры, то колебания маятников подобны. Проверим это утверждение и непосредственно. Пусть lм, Тм – длина и период маятника модели, а

lнн – для натуры, тогда на основании (9.2) имеем и . Откуда и , или , где коэффициент подобия , т. е. если мы найдем на основе эксперимента Тм для модели и измерим lм и lн, то легко получим Тн для натуры. Итак, , т. е. при заданном периоде Тм одного маятника получаем соответствующий период Тн другого простым пересчетом, аналогичным пересчету при геометрическом подобии.

Для малых колебаний справедлива формула (8.8)

T=с 1 ,

где с 1 – постоянная, которую найдем из опыта.

Возьмем маятник длиной l =1 (м) и экспериментально определим его период. С помощью секундомера находим, что этот маятник за 10с совершает 5 колебаний. Поэтому Т =2c. Таким образом

2= c 1 ,

т.е. c 1=6,27, тогда как теоретически = 2 . Отсюда Т 6,27 .

При малых и lм =1м мы нашли на основе опыта Тм =2 с. Пусть lн =0,49 м тогда . Сравним этот результат с экспериментальным, взяв маятник длины 0,49 м, тогда обнаружим, что он совершает 10 колебаний за 14 с, т.е. Т =1,4 с. Таким образом, пересчет соответствует эксперименту.








Дата добавления: 2015-04-16; просмотров: 615. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия