Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОПИШИТЕ СХЕМУ РЕШЕНИЯ ЗАДАЧИ МЕТОДОМ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ





Рассмотрим данный вопрос на примере следующей задачи:

Моторная лодка прошла 25 км по течению реки и 3 км против течения, затратив на весь путь 2 часа. Какова скорость лодки в стоячей воде, если скорость течения реки 3 км/ч.

Решение:

Этап I: Сведения решения текстовой задачи к математической задаче решения уравнения

Пусть км/ч – скорость лодки в стоячей воде. Тогда скорость лодки по течению км/ч, а против течения км/ч. По течению реки лодка прошла 25 км за ч, а против течения 3 км за ч. Значит, время, затраченное на весь путь, выраженное через неизвестное , будет ч, но по условию на весь путь затрачено 2 ч.

Следовательно, . (1)

Уравнение (1.1) ‑ математическая модель задачи, возможно и неполная, но отражающая самую существенную связь условий задачи.

Конечно, в дальнейшем может возникнуть необходимость дополнить модель неучтёнными ограничениями.

Подчеркнём, что в уравнении (1.1) – безразмерная, неименованная величина. В математической модели мы отвлекаемся от физического смысла рассматриваемых величин: для нас важны числа, которыми эти величины выражаются.

Этап II: Решение математической задачи

На втором этапе решаем математическую задачу, т.е. уравнение (1) и получаем два корня: .

Этап III: Анализ полученного решения

На третьем этапе, имея уже решение математической задачи, необходимо это решение проанализировать, разобраться в его содержательном смысле и сделать правильные выводы.

При этом следует иметь в виду, что уравнение (1) есть следствие исходной задачи и потому может содержать посторонние решения.

Действительно, удовлетворяет уравнению (1), но не удовлетворяет условию задачи, так как скорость лодки 2 км/ч не может быть меньше скорости течения реки 3 км/ч. Итак, ответ, записанный в терминах исходной задачи: скорость лодки в стоячей воде равна 12 км/ч.

Теперь очевидно, что при построении математической модели мы не учли ограничение по условию задачи на скорость лодки в стоячей воде:

. (2)

Таким образом, равнение (1) имеет единственное решение.

Полностью формализованной математической моделью рассматриваемой задачи является смешанная система, состоящая из уравнения (1) и неравенства (12). Именно эта система является математической записью физических условий, однозначно определяющих скорость лодки в стоячей воде.

При решении прикладных задач очень важным является третий этап, заключающийся в обратном переводе результата исследования модели с языка математики на язык прикладной задачи, этап интерпретации (истолкования) результата исследования математической модели, этап, на котором нужно разобраться в решении математической задачи, в реальном смысле этого решения и сделать правильные выводы.

СЛЕДОВАТЕЛЬНО:

Приведём общую схему применения математики к изучению реальных объектов и решению прикладных задач:

Реальный объект, прикладная задача
 
Содержательная модель, текстовая задача
 
Математическая модель
 
Решение математической задачи
 
Интерпретация решения в терминах реальной задачи или содержательной модели

 







Дата добавления: 2015-04-16; просмотров: 446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия