Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ АПОРИИ «АХИЛЛЕС И ЧЕРЕПАХА» И ЕЕ РАЗРЕШЕНИЕ





Определение суммы ряда

Для этого рассмотрим полоску бумаги длиной 1 (дм) и шириной 1 (см) (рисунок 11.1)

A C1 C2 C3 B

 

 


C1 C2 C3

Рисунок 11.1 – Модель полоски бумаги

 

Мысленно разрежем (или сложим) её пополам по отрезку , затем разрежем (или сложим) правую часть пополам по отрезку и т. д. до бесконечности. Тогда ; ; ; … .

Теперь очевидно, что (11.2)

и левая часть равенства (11.2), представляющая сумму бесконечного числа слагаемых, не только имеет смысл, но и равна 1, т. е. длине всей полоски. Но как найти сумму, находящуюся в левой части равенства (11.2), не зная заранее, что она равна 1.

Для этого сначала рассмотрим сумму первых n слагаемых

,

представляющую для геометрической прогрессии сумму n её первых членов, которая в общем случае равна

, (11.3)

где – первый член геометрической прогрессии, знаменатель которой ≠ 1.

Теперь определим бесконечную сумму, состоящую из членов геометрической прогрессии при . Из (11.3) следует, что

. (11.4)

Так как в случае полоски длины 1, , то на основании (11.4) , что совпадает с (11.2). Итак, сумма членов бесконечной геометрической прогрессии при вычисляется по формуле (11.4).

Отметим, что великий русский писатель Л. Н. Толстой на первой странице третьей части третьего тома романа «Война и мир» приводит описание другой апории Зенона «Ахиллес и черепаха»:

Для человеческого ума непонятна абсолютная непрерывность движения. Человеку становятся понятны законы какого бы то ни было движения только тогда, когда он рассматривает произвольно взятые единицы этого движения. Но вместе с тем из этого - то произвольного деления непрерывного движения на прерывные единицы проистекает большая часть человеческих заблуждений. Известен так называемый софизм древних, состоящий в том, что Ахиллес никогда не догонит впереди идущую черепаху, несмотря на то, что Ахиллес идёт в десять раз скорее черепахи: как только Ахиллес пройдёт пространство, отделяющее его от черепахи, черепаха пройдёт впереди его одну десятую этого пространства; Ахиллес пройдёт эту десятую, черепаха пройдёт одну сотую и т. д. до бесконечности. Задача эта представлялась древним неразрешимой. Бессмысленность решения (что Ахиллес никогда не догонит черепаху) вытекала из того только, что произвольно были допущены прерывные единицы движения, тогда как движения и Ахиллеса и черепахи совершались непрерывно. Принимая всё более и более мелкие единицы движения, мы только приближаемся к решению вопроса, но никогда не достигаем его. Только допустив бесконечно – малую величину и восходящую от неё прогрессию до одной десятой и взяв сумму этой геометрической прогрессии, мы достигаем решения вопроса». Таким образом, и эта апория разрешается математически существованием суммы бесконечной прогрессии при (в общем случае при) в формуле (11.4).


 







Дата добавления: 2015-04-16; просмотров: 876. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия