Тогда и
Доказательство.◄;Дополним определение функций f(x) и g(x), положив их при x = a равными нулю: f(a) = g(a) = 0. Тогда эти функции окажутся непрерывными во всём замкнутом промежутке [a, b]: их значения в точке a совпадают с пределами при x→a + 0 [ввиду 2)], а в прочих точках непрерывность вытекает из существования конечных производных [см. 3)]. Применяя теорему Коши, получим
где a‹c‹x. То обстоятельство, что g(x) ≠ 0, т. е. g(x) ≠ g(a), есть следствие предположения: g′(x) ≠ 0, как это было установлено при выводе формулы Коши. Когда x→a, очевидно, и с→a, так что, в силу 4),
что и требовалось доказать.► Таким образом, доказанная теорема сводит предел отношения функций к пределу отношения производных, если последний существует. Часто оказывается, что нахождение предела отношения производных проще и может быть осуществлено элементарными приёмами. Теорема 1 легко распространяется на случай, когда аргумент x стремится к бесконечному пределу: a = Теорема 28.2. Пусть: 1) функции f(x) и g(x) определены в промежутке [c, +∞), где с›0, 2) .
|