Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тогда и





Доказательство.◄;Дополним определение функций f(x) и g(x), положив их при x = a равными нулю: f(a) = g(a) = 0. Тогда эти функции окажутся непрерывными во всём замкнутом промежутке [a, b]: их значения в точке a совпадают с пределами при x→a + 0 [ввиду 2)], а в прочих точках непрерывность вытекает из существования конечных производных [см. 3)]. Применяя теорему Коши, получим

,

где a‹c‹x. То обстоятельство, что g(x) ≠ 0, т. е. g(x) ≠ g(a), есть следствие предположения: g′(x) ≠ 0, как это было установлено при выводе формулы Коши.

Когда x→a, очевидно, и с→a, так что, в силу 4),

,

что и требовалось доказать.►

Таким образом, доказанная теорема сводит предел отношения функций к пределу отношения производных, если последний существует. Часто оказывается, что нахождение предела отношения производных проще и может быть осуществлено элементарными приёмами.

Теорема 1 легко распространяется на случай, когда аргумент x стремится к бесконечному пределу: a = . Именно, имеет место, например.

Теорема 28.2. Пусть: 1) функции f(x) и g(x) определены в промежутке [c, +∞), где с›0, 2) , , 3) существуют в промежутке [c, +∞) конечные производные f′(x) и g′(x), причём g′(x) ≠ 0, и, наконец, 4) существует (конечный или нет) предел

.







Дата добавления: 2015-04-16; просмотров: 425. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия