Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость непрерывной функции





Определение 30.1. Непрерывная на интервале (a,b) функция f, называется выпуклой вниз (соответственно, выпуклой вверх), если для любых точек , , и любого числа справедливо неравенство

(1)

(соответственно, неравенство

. (1’)

В правой части неравенства (1) стоит значение функции f в произвольной точке , расположенной на отрезке , содержащемся в интервале (a,b). Левая часть в (1) выражает собой ординату точки координатной плоскости, абсцисса которой равна , , и которая лежит на прямолинейном отрезке (хорде), соединяющем точки и графика функции f.

Итак, если непрерывная функция f выпукла вниз на интервале (a,b), то для любых его точек , , график функции f на отрезке расположен ниже хорды, стягивающей концевые точки графика на этом отрезке (см. рис.1, а)).

 

Рис.1

 

Аналогично, заключаем, что если непрерывная функция f выпукла вверхна интервале (a,b), то для любых его точек , , график функции f на отрезке расположен выше хорды, стягивающей концевые точки графика на этом отрезке (см. рис.1, b)).

Обозначим . Тогда , откуда .

Неравенство (1) принимает вид

 

, (2)

или, после умножения обеих частей его на множитель ,

. (3)

Поскольку , то после элементарных преобразований неравенство (4) переходит в неравенство

, (4)

справедливое для любого .

Итак, условие (1) равносильно неравенству (4).

В случае выпуклости вверх знаки неравенств (2)-(4) следует сменить на противоположные.

 







Дата добавления: 2015-04-16; просмотров: 456. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия