Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость непрерывной функции





Определение 30.1. Непрерывная на интервале (a,b) функция f, называется выпуклой вниз (соответственно, выпуклой вверх), если для любых точек , , и любого числа справедливо неравенство

(1)

(соответственно, неравенство

. (1’)

В правой части неравенства (1) стоит значение функции f в произвольной точке , расположенной на отрезке , содержащемся в интервале (a,b). Левая часть в (1) выражает собой ординату точки координатной плоскости, абсцисса которой равна , , и которая лежит на прямолинейном отрезке (хорде), соединяющем точки и графика функции f.

Итак, если непрерывная функция f выпукла вниз на интервале (a,b), то для любых его точек , , график функции f на отрезке расположен ниже хорды, стягивающей концевые точки графика на этом отрезке (см. рис.1, а)).

 

Рис.1

 

Аналогично, заключаем, что если непрерывная функция f выпукла вверхна интервале (a,b), то для любых его точек , , график функции f на отрезке расположен выше хорды, стягивающей концевые точки графика на этом отрезке (см. рис.1, b)).

Обозначим . Тогда , откуда .

Неравенство (1) принимает вид

 

, (2)

или, после умножения обеих частей его на множитель ,

. (3)

Поскольку , то после элементарных преобразований неравенство (4) переходит в неравенство

, (4)

справедливое для любого .

Итак, условие (1) равносильно неравенству (4).

В случае выпуклости вверх знаки неравенств (2)-(4) следует сменить на противоположные.

 







Дата добавления: 2015-04-16; просмотров: 456. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия