Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость непрерывной функции





Определение 30.1. Непрерывная на интервале (a,b) функция f, называется выпуклой вниз (соответственно, выпуклой вверх), если для любых точек , , и любого числа справедливо неравенство

(1)

(соответственно, неравенство

. (1’)

В правой части неравенства (1) стоит значение функции f в произвольной точке , расположенной на отрезке , содержащемся в интервале (a,b). Левая часть в (1) выражает собой ординату точки координатной плоскости, абсцисса которой равна , , и которая лежит на прямолинейном отрезке (хорде), соединяющем точки и графика функции f.

Итак, если непрерывная функция f выпукла вниз на интервале (a,b), то для любых его точек , , график функции f на отрезке расположен ниже хорды, стягивающей концевые точки графика на этом отрезке (см. рис.1, а)).

 

Рис.1

 

Аналогично, заключаем, что если непрерывная функция f выпукла вверхна интервале (a,b), то для любых его точек , , график функции f на отрезке расположен выше хорды, стягивающей концевые точки графика на этом отрезке (см. рис.1, b)).

Обозначим . Тогда , откуда .

Неравенство (1) принимает вид

 

, (2)

или, после умножения обеих частей его на множитель ,

. (3)

Поскольку , то после элементарных преобразований неравенство (4) переходит в неравенство

, (4)

справедливое для любого .

Итак, условие (1) равносильно неравенству (4).

В случае выпуклости вверх знаки неравенств (2)-(4) следует сменить на противоположные.

 







Дата добавления: 2015-04-16; просмотров: 456. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия