Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пространство , множества в нем





Напомним, что арифметическое n-мерное пространство представляет собой множество точек
Это векторное пространство с операциями суммы и произведения на число , определяемыми так

Более того это – евклидово пространство со скалярным произведением . Следовательно, определена норма вектора , равная
и расстояние между и ,заданное формулой

(31.1)

При и эта формула становится очевидной формулой для расстояний на плоскости и в пространстве, поэтому общую формулу (31.1) для расстояния можно рассматривать как естественное обобщение известных формул на случай n -мерного пространства.

В курсе линейной алгебры было доказано:

1. , причем ;

2. ;

3.

Свойство 3 называется неравенством треугольника.

Определение 31.1 Множество, на котором определена функция , обладающая свойствами 1-3, называется метрическим пространством,
а - метрикой (или расстоянием) а этом пространстве.

Итак, - метрическое пространство с расстоянием (31.1).

 

Определение 31.2 - окрестностью точки называется множество точек таких, что . Обозначим ее

Определение 31.3 Пусть . Тогда называется внутренней точкой этого множества, если .

Определение 31.4 - открытое множество, если все его точки – внутренние.

Примеры: интервал в , круг без границы в .

 

(())

Определение 31.5 Пусть . Точка называется предельной точкой множества , если .

Определение 31.6 называется замкнутым множеством, если оно содержит все свои предельные точки.

Примеры: отрезок в , круг с границей в .

Замечание. Часто вместо «круглых» окрестностей рассматривают «прямоугольные», т.е. .

Легко видеть, что каждую «круглую» окрестность можно вписать в «прямоугольную» и наоборот.

Определение 31.7 Множество называется компактным если из любой бесконечной системы открытых множеств такой, что можно выбрать конечное число так, что .

Иными словами, из любого покрытия можно выделить конечное подпокрытие.

Теорема 31.1 компактно тогда и только тогда, когда оно ограниченное (т.е. содержится в некотором шаре с центром в начале координат) и замкнутое (без доказательства).







Дата добавления: 2015-04-16; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия