Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пространство , множества в нем





Напомним, что арифметическое n-мерное пространство представляет собой множество точек
Это векторное пространство с операциями суммы и произведения на число , определяемыми так

Более того это – евклидово пространство со скалярным произведением . Следовательно, определена норма вектора , равная
и расстояние между и ,заданное формулой

(31.1)

При и эта формула становится очевидной формулой для расстояний на плоскости и в пространстве, поэтому общую формулу (31.1) для расстояния можно рассматривать как естественное обобщение известных формул на случай n -мерного пространства.

В курсе линейной алгебры было доказано:

1. , причем ;

2. ;

3.

Свойство 3 называется неравенством треугольника.

Определение 31.1 Множество, на котором определена функция , обладающая свойствами 1-3, называется метрическим пространством,
а - метрикой (или расстоянием) а этом пространстве.

Итак, - метрическое пространство с расстоянием (31.1).

 

Определение 31.2 - окрестностью точки называется множество точек таких, что . Обозначим ее

Определение 31.3 Пусть . Тогда называется внутренней точкой этого множества, если .

Определение 31.4 - открытое множество, если все его точки – внутренние.

Примеры: интервал в , круг без границы в .

 

(())

Определение 31.5 Пусть . Точка называется предельной точкой множества , если .

Определение 31.6 называется замкнутым множеством, если оно содержит все свои предельные точки.

Примеры: отрезок в , круг с границей в .

Замечание. Часто вместо «круглых» окрестностей рассматривают «прямоугольные», т.е. .

Легко видеть, что каждую «круглую» окрестность можно вписать в «прямоугольную» и наоборот.

Определение 31.7 Множество называется компактным если из любой бесконечной системы открытых множеств такой, что можно выбрать конечное число так, что .

Иными словами, из любого покрытия можно выделить конечное подпокрытие.

Теорема 31.1 компактно тогда и только тогда, когда оно ограниченное (т.е. содержится в некотором шаре с центром в начале координат) и замкнутое (без доказательства).







Дата добавления: 2015-04-16; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия