Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 34. Достаточные условия дифференцируемости функции нескольких переменных содержатся в следующей теореме





Достаточные условия дифференцируемости функции нескольких переменных содержатся в следующей теореме.

Теорема 19.1. Пусть частные производные , существуют в окрестности точки и непрерывны в самой точке . Тогда дифференцируема в точке .

◄Ограничимся случаем .

Пусть точки и принадлежат рассматриваемой окрестности точки . Рассмотрим приращение функции в точке : и представим его в виде:

. (19.1)

Зафиксировав , рассмотрим функцию от переменной вида

. (19.2)

Поскольку в существуют частные производные, функция дифференцируема на любом промежутке, содержащем и . Применим поэтому теорему Лагранжа, согласно которой

, где . (19.3)

По определению частной производной,

. (19.4)

Поэтому

. (19.5)

Аналогичным образом,

. (19.6)

Из (19.1), (19.5) и (19.6) получаем:

. (19.7)

Далее, при точки и стремятся к точке .

Непрерывность частных производных в этой точке означает, что их можно представить в виде

,

, (19.8)

где при .

Из (19.7) и (19.8) следует представление

,

означающее дифференцируемость функции .►

Замечание. Непрерывность частных производных не является необходимым условием дифференцируемости функций. Например, можно доказать, что функция

дифференцируема в точке (0,0), но частные производные в этой точке не непрерывны (без доказательства).

Замечание. Тем не менее для функции частные производные в точке (0,0) равны 0, так как и (в остальных точках , и ясно, что эти производные терпят разрыв в точке (0,0)). Но приращение не имеет вид , где при .

Действительно, полагая и предполагая противное, т. е. что функция дифференцируема в (0,0), т. е. , получаем , или , что невозможно, так как при правая часть стремится к нулю, а левая – нет!







Дата добавления: 2015-04-16; просмотров: 510. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия