Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 36. Касательная плоскость





Пусть дифференцируема в точке . Докажем, что существует касательная плоскость к этой поверхности в точке и что она задается уравнением (20.1).

По аналогии с одномерным случаем (прямая называется касательной к кривой в точке , если расстояние от точки до этой прямой представляет собой бесконечно малую более высокого порядка, чем при . При этом касательная имеет уравнение ) будем называть плоскость касательной к поверхности в точке , если расстояние от точки до этой плоскости есть бесконечно малая более высокого порядка, чем при .

Рассмотрим некоторую плоскость, проходящую через точку : (20.2)

Из курса аналитической геометрии известно, что расстояние от точки поверхности до плоскости (20.2) равно (20.3)

(вспомнить про нормальное уравнение плоскости).

Если дифференцируема в точке , то положим в (20.2) (20.4)

и заметим, что (20.5)

где при . Тогда из (3), (4), (5) следует, что расстояние от рассматриваемой точки до плоскости есть , что представляет собой бесконечно малую более высокого порядка, чем .

Обратно, если есть касательная плоскость (2), т.е. , где при то, раскрывая модуль, получаем, что , где при , т.е. - дифференцируемая в точке функция и .







Дата добавления: 2015-04-16; просмотров: 476. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия