Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 36. Касательная плоскость





Пусть дифференцируема в точке . Докажем, что существует касательная плоскость к этой поверхности в точке и что она задается уравнением (20.1).

По аналогии с одномерным случаем (прямая называется касательной к кривой в точке , если расстояние от точки до этой прямой представляет собой бесконечно малую более высокого порядка, чем при . При этом касательная имеет уравнение ) будем называть плоскость касательной к поверхности в точке , если расстояние от точки до этой плоскости есть бесконечно малая более высокого порядка, чем при .

Рассмотрим некоторую плоскость, проходящую через точку : (20.2)

Из курса аналитической геометрии известно, что расстояние от точки поверхности до плоскости (20.2) равно (20.3)

(вспомнить про нормальное уравнение плоскости).

Если дифференцируема в точке , то положим в (20.2) (20.4)

и заметим, что (20.5)

где при . Тогда из (3), (4), (5) следует, что расстояние от рассматриваемой точки до плоскости есть , что представляет собой бесконечно малую более высокого порядка, чем .

Обратно, если есть касательная плоскость (2), т.е. , где при то, раскрывая модуль, получаем, что , где при , т.е. - дифференцируемая в точке функция и .







Дата добавления: 2015-04-16; просмотров: 476. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия