Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость дифференцируемой функции





 

Теорема 30.1. Для того, чтобы дифференцируемая на функция f была выпукла вниз (вверх) на этом интервале, необходимо и достаточно, чтобы её производная функция не убывала (не возрастала) на этом интервале.

◄Доказательство проведём для выпуклой вниз функции. Докажем сначала, что её производная не убывает.

Пусть , . Переходя в неравенстве (4) к пределу при , получим:

. (5)

Переходя в неравенстве (4) к пределу при , получим:

. (6)

Из неравенств (5) и (6) следуют неравенства , что и требовалось доказать.

Обратно, пусть производная функция не убывает на . Пусть , . Следует доказать, что выполняется неравенство (4). Для этого заметим, что дифференцируема на , следовательно, непрерывна на и непрерывна на . Тогда по теореме Лагранжа, применённой к отрезку где , находим:

. (7)

Аналогично, по теореме Лагранжа, применённой к отрезку

. . (8)

Так как не убывает на , выполняется неравенство , из которого следует, ввиду (7) и (8), неравенство (4), равносильное выпуклости вниз рассматриваемой функции.►







Дата добавления: 2015-04-16; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия