Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость дифференцируемой функции





 

Теорема 30.1. Для того, чтобы дифференцируемая на функция f была выпукла вниз (вверх) на этом интервале, необходимо и достаточно, чтобы её производная функция не убывала (не возрастала) на этом интервале.

◄Доказательство проведём для выпуклой вниз функции. Докажем сначала, что её производная не убывает.

Пусть , . Переходя в неравенстве (4) к пределу при , получим:

. (5)

Переходя в неравенстве (4) к пределу при , получим:

. (6)

Из неравенств (5) и (6) следуют неравенства , что и требовалось доказать.

Обратно, пусть производная функция не убывает на . Пусть , . Следует доказать, что выполняется неравенство (4). Для этого заметим, что дифференцируема на , следовательно, непрерывна на и непрерывна на . Тогда по теореме Лагранжа, применённой к отрезку где , находим:

. (7)

Аналогично, по теореме Лагранжа, применённой к отрезку

. . (8)

Так как не убывает на , выполняется неравенство , из которого следует, ввиду (7) и (8), неравенство (4), равносильное выпуклости вниз рассматриваемой функции.►







Дата добавления: 2015-04-16; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия