Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость дифференцируемой функции





 

Теорема 30.1. Для того, чтобы дифференцируемая на функция f была выпукла вниз (вверх) на этом интервале, необходимо и достаточно, чтобы её производная функция не убывала (не возрастала) на этом интервале.

◄Доказательство проведём для выпуклой вниз функции. Докажем сначала, что её производная не убывает.

Пусть , . Переходя в неравенстве (4) к пределу при , получим:

. (5)

Переходя в неравенстве (4) к пределу при , получим:

. (6)

Из неравенств (5) и (6) следуют неравенства , что и требовалось доказать.

Обратно, пусть производная функция не убывает на . Пусть , . Следует доказать, что выполняется неравенство (4). Для этого заметим, что дифференцируема на , следовательно, непрерывна на и непрерывна на . Тогда по теореме Лагранжа, применённой к отрезку где , находим:

. (7)

Аналогично, по теореме Лагранжа, применённой к отрезку

. . (8)

Так как не убывает на , выполняется неравенство , из которого следует, ввиду (7) и (8), неравенство (4), равносильное выпуклости вниз рассматриваемой функции.►







Дата добавления: 2015-04-16; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия