Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость дифференцируемой функции





 

Теорема 30.1. Для того, чтобы дифференцируемая на функция f была выпукла вниз (вверх) на этом интервале, необходимо и достаточно, чтобы её производная функция не убывала (не возрастала) на этом интервале.

◄Доказательство проведём для выпуклой вниз функции. Докажем сначала, что её производная не убывает.

Пусть , . Переходя в неравенстве (4) к пределу при , получим:

. (5)

Переходя в неравенстве (4) к пределу при , получим:

. (6)

Из неравенств (5) и (6) следуют неравенства , что и требовалось доказать.

Обратно, пусть производная функция не убывает на . Пусть , . Следует доказать, что выполняется неравенство (4). Для этого заметим, что дифференцируема на , следовательно, непрерывна на и непрерывна на . Тогда по теореме Лагранжа, применённой к отрезку где , находим:

. (7)

Аналогично, по теореме Лагранжа, применённой к отрезку

. . (8)

Так как не убывает на , выполняется неравенство , из которого следует, ввиду (7) и (8), неравенство (4), равносильное выпуклости вниз рассматриваемой функции.►







Дата добавления: 2015-04-16; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия