Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции алгебры логики





Функцией алгебры логики переменных (функцией Буля или булевой функцией) называется функция переменных

,

где каждая переменная принимает два значения 0 и 1: , и при этом сама функция может принимать только одно из двух значений 0 и 1: .

Число различных булевых функций переменных равно . В частности, различных булевых функций одной переменной четыре, а различных булевых функций двух переменных шестнадцать. Перечислим эти функции.

Рассмотрим таблицу истинности всех различных булевых функций одной переменной:

 

                         
                                   
                                   

 

Из таблицы следует, что эти функции можно представить как формулы исчисления высказываний:

.

Таблица истинности всех различных булевых функций двух переменных имеет вид:

 

                   
                   
                   
                   

 

                   
                   
                   
                   

 

Этим функциям соответствуют следующие формулы исчисления высказываний:

,

Каждой булевой функции можно сопоставить формулу алгебры высказываний. С этой целью введем обозначение

Следующий факт для булевой функции с любым количеством переменных. Приведем его для функции двух переменных.

Произвольная булева функция двух переменных представима в виде:

.

Для краткости записи опустим символ конъюнкции: вместо будем писать :

.

Это обозначение совпадает и с содержанием этих операций: значение конъюнкции , на самом деле, совпадает со значением арифметической операции умножения .

Полагая , , , функцию можно представить следующим образом:

.

Полученное представление справедливо для всех булевых функций с любым количеством переменных.

 







Дата добавления: 2015-04-16; просмотров: 441. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия