Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрическая интерпретация задачи линейного программирования





Каждой паре чисел х 1 и х 2 поставим в соответствие точку плоскости (2-мерного пространства) с координатами х 1 и х 2, тогда каждое ограничение (2.2.1) задает полупространство, а вся система (2.2.1) определяет многоугольник (в n -мерном пространстве – многогранник), полученный в результате их пересечения. В общем случае многогранник может быть неограниченным или пустым (система неравенств противоречива).

В примере 2.2.1 множество допустимых планов соответствует на плоскости множеству точек многоугольника OABCD(рис 2.2.1.).

Целевая функция F=5 х 1 + 6 х 2 определяет на плоскости семейство прямых линий (в n -мерном пространстве – плоскостей), параллельных друг другу, причем, чем дальше прямая от точки О, тем большее значение принимает целевая функция. Таким образом, оптимальное решение будет в точке многоугольника OABCD, где целевая функция касается этого многоугольника при удалении от точки О.

х 2                            
11 (I)                          
10                            
9                            
8                            
7F                            
6         n                  
5A   B                        
4                            
3 n2     C         (III)          
2             (II)              
1 n1 2 3 4 5 D 6 7 8 9 10 11 12 14 15

O Рис.2.2.1. Графическое представление задачи 2.2.1. х 1

 

В нашем примере это будет вершина многоугольника С с координатами (примерно) х 1=4.5; х 2=3. Для точного определения координат точки С рассмотрим уравнения прямых, пересечение которых ее образовало.

Получаем систему из двух уравнений:

2 х 1 + 1 х 2 = 12,

2 х 1 + 3 х 2 = 18,

решив которую получим точные значения х 1=4.5; х 2=3.

Метод решения системы линейных уравнений может быть использован любой, однако, в целях сокращения объема вычислений при дальнейшем изложении предлагается метод Крамера.

Напомним кратко его суть:

Для решения системы

a 11 х 1 + a 12 х 2 = b 1,

a 21 х 1 + a 22 х 2 = b 2,

вычисляем D = a 11 a 22 - a 12 a 21,

D1 = b 1 a 22 - a 12 b 2,

D2 = a 11 b 2 - b 1 a 21,

и затем х 1 = D1 / D; х 2 = D2 / D.

В нашем примере: D=2´3 – 1´2 = 4,

D1 = 12´3 – 1´18 = 18,

D2 = 2 ´18 – 12 ´2 = 12,

откуда х 1 = 18/4 = 4.5, х 2 = 12/4 = 3 (совпало с первоначальным приближением).

Вычислим значение целевой функции в точке С:

F = 5 ´ 4.5 + 6 ´3 = 40.5.

Таким образом мы решили поставленную задачу, нашли объемы производства х 1 первого и х 2 второго вида продукции, удовлетворяющие ограничениям (2.2.1) и доставляющие максимальное значение целевой функции F = 40.5 усл.ед.

Пример 2.2.2. Рассмотрим еще одну задачу (ее часто называют задачей о диете, хотя аналогичной математической моделью можно описывать задачи, ничего общего с диетой не имеющие).

Таблица 2.2.2

Виды кормов Содержание в 1 кг Себестоимость 1 кг (усл. ед).
Кормовых ед. Белок (г) Кальций (г)
Сено (х 1) 0.5     1.5
Концентраты (х 2)       2.5
Норматив        

Под нормативом понимается необходимый минимум питательных веществ суточного рациона. В этой задаче необходимо найти такие объемы кормов х 1, х 2, чтобы обеспечить содержание в них кормовых единиц, белка и кальция не менее нормативного при минимальной стоимости. Опять же предполагая, что количество полезных веществ, а также стоимость пропорциональны объемам кормов, получаем следующую математическую модель задачи:

(I) 0.5 х 1 + 1 х 2 ³ 20

(II) 50 х 1 + 200 х 2 ³ 2000

(III) 10 х 1 + 2 х 2 ³ 100 (2.2.2)

х 1 ³ 0, х 2 ³ 0,

F =1.5 х 1 + 2.5 х 2® min.

Геометрическую интерпретацию данной задачи приведем на рис.2.2.2.

х 2                            
50                            
A                            
(II)                            
40                            
35                            
30                            
F   n                        
20 B                          
(III)                            
10         (I)                  
5             C              

5 10 15 20 25 30 35 40 х 1

Рис.2.2.2. Графическое представление задачи 2.2.2

В данном случае множество допустимых планов представляет собой неограниченный многоугольник, заштрихованный на рис.2.2.2.

Целевая функция принимает наименьшее значение в точке В.

Визуально на графике координаты этой точки х 1 @ 7, х 2 @ 17.

Сделаем аналитическую проверку:

D=0.5´2 – 1´10 = –9,

D1 = 20´2 – 1´100 = –60,

D2 = 0.5 ´100 – 20 ´10 = –150.

Откуда х 1 = –60 / –9 = 6.67, х 2 = –150 / –9 = 16.67.







Дата добавления: 2015-04-16; просмотров: 626. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия