Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Моделирование задачи оптимизации производства методами линейного программирования





Линейное программирование является одним из методов решения общих задач оптимизации, в которых учитывается большое число переменных, подчиненных определенным ограничениям. При решении этих задач необходимо получить оптимальное значение определенного критерия эффективности (функции цели), например прибылей, затрат, количества произведенных продуктов или других показателей, при условии, что удовлетворяются поставленные ограничения. Эти ограничения в свою очередь носят различный характер и объясняются условиями производства, управления, сбыта, хранения, наличием сырья или законодательными положениями.

Линейное программирование можно использовать для решения задач оптимизации, в которых выполняются следующие условия:

1. Необходимо наличие линейной функции цели, оптимальное значение которой необходимо отыскать. Требование линейности существенно для применения методов, изложенных в этой и следующей теме. Линейность означает, например, что для изготовления 10 изделий потребуется в10 раз больше средств, чем для получения одного изделия, или для получения 5 изделий уйдет в 5 раз больше времени, чем на изготовление одного изделия, и т.д. Если же такое допущение пропорциональной зависимости неверно или нельзя получить линейную функцию за счет преобразования переменных, то методы линейного программирования неприменимы.

2. Ограничения также должны быть заданы в виде системы линейных равенств или неравенств.

Если задача поставлена правильно, то можно использовать методы линейного программирования для ее решения.

Рассмотрим следующую производственную задачу:

Необходимо произвести два вида продукции в объемах х 1 и х 2, используя три ресурса, которые имеются в количестве b 1, b 2, b 3, соответственно. Известны нормативы потребления ресурсов на производство единицы первого и второго вида продукции:

a 11-количество первого ресурса, необходимого для производства единицы первого вида продукции;

a 12-количество первого ресурса, необходимого для производства единицы второго вида продукции;

a 21-количество второго ресурса, необходимого для производства единицы первого вида продукции;

a 22-количество второго ресурса, необходимого для производства единицы второго вида продукции;

a 31-количество третьего ресурса, необходимого для производства единицы первого вида продукции;

a 32-количество третьего ресурса, необходимого для производства единицы второго вида продукции.

Пусть c 1 и c 2 – прибыль от реализации единицы первого и второго вида продукции. Это постоянные факторы данной задачи.

Пример 2.2.1. Придадим постоянным факторам конкретные числовые значения и сведем их в табл.2.2.1.

Таблица 2.2.1.

  Изделие 1 (х 1) Изделие 2 (х 2) Наличие
Ресурс 1 a 11 = 2 a 12 = 1 b 1 = 12
Ресурс 2 a 21= 2 a 22 = 3 b 2 = 18
Ресурс 3 a 31 = 1 a 32 = 3 b 3 = 15
Прибыль c 1 = 5 c 2 = 6  
           

Производственная задача формулируется следующим образом:

Найти такие объемы производства продукции х 1 и х 2, при которых потребление ресурсов в соответствии с нормативами не превышало бы их наличия, и при этом прибыль от реализации продукции была бы максимальна.

Предполагая, что количество потребляемых ресурсов, а также прибыль пропорциональны объемам производства, получаем следующую математическую модель задачи:

(I) 2 х 1 + 1 х 2 £ 12

(II) 2 х 1 + 3 х 2 £ 18

(III) 1 х 1 + 3 х 2 £ 15 (2.2.1.)

х 1 ³ 0, х 2 ³ 0,

F =5 х 1 + 6 х 2 ® max.

Система неравенств (2.2.1) отражает ограничения на потребляемые ресурсы, а целевая функция F определяет прибыль, которую необходимо максимизировать. Пару чисел х 1 и х 2, удовлетворяющих системе ограничений (2.2.1), будем называть допустимым планом, а допустимый план, дающий максимальное значение целевой функции F – оптимальным планом (решением).







Дата добавления: 2015-04-16; просмотров: 632. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия