Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Точка покоя





 

1. Корни характеристического уравнения действительны..

 

а) .

При . Поэтому точка покоя (или тривиальное решение) асимптотически устойчива.

Заметим, что первое слагаемое – это проекция траектории на ось , второе слагаемое – проекция на ось .

Такая точка покоя называется

устойчивый узел.

 

 

б) .

Этот случай можно рассматривать как предыдущий, если формально положить t < 0. Получим те же траектории, что и в п. а), но стрелки на них будут направлены в другую сторону. Направление движение другое (t<0). Такая точка называется неустойчивый узел.

 

в) .

По вектору мы, находясь на траектории, стремимся к нулю, по вектору , наоборот, удаляемся от нуля.

 

Такая точка покоя - седло.

г) .

Это – тоже седло, но стрелки

направлены в другую сторону.

 

Траектория прижимается к той оси, для которой модуль характеристического числа меньше.

Седла – неустойчивые точки покоя.

Заметим, в ситуациях узлов и седла траектория, начавшись в определенном квадранте, в нем и остается.

д) .

Точка покоя – дикритический узел,

Устойчивый при , неустойчивый при

 

е)

Точка покоя - вырожденный узел,при устойчивая, но не асимптотически устойчивая. Если , то точка покоя - неустойчивая (стрелки направлены в обратную сторону)

ж) . Точка безразличного равновесия. При изменении времени любая точка остается на месте. Этими точками заполнена вся плоскость.

 

 

2. Корни характеристического уравнения комплексно сопряженные.

Параметр t имеет смысл угла поворота вокруг начала координат (в периодической составляющей).

а) Если , то траектория приближается к началу координат с ростом t (спираль), так как - убывающая функция. Точка покоя устойчивый фокус асимптотически устойчива

б) если , то траектория удаляется от начала координат с ростом t (спираль), так как - возрастающая функция. Точка покоя неустойчивый фокус неустойчива

в) если , то траектории представляют собой эллипсы, охватывающие начало координат. Точка покоя центр устойчива, но не асимптотически устойчива.

а) б) в)

 

 

Пример. , ,

Классифицировать точки покоя в зависимости от параметра.

 

,

а) седло,

б) неустойчивый узел

в) вырожденный узел

 

- комплексно сопряженные.

Так как , то точка покоя – неустойчивый фокус

3) , точка покоя – неустойчивый дикритический узел.

 

 







Дата добавления: 2015-04-16; просмотров: 511. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия