Формула трапеций
Сложим первую и вторую формулы прямоугольников и разделим пополам. Получим формулу трапеций
Поясним название формулы. Приблизим площадь под графиком функции на отрезке площадью трапеции . Суммируя площади по всему отрезку интегрирования, получим Аппроксимируем функцию кусочно – линейной функцией, значения которой совпадают с значениями функции в точках разбиения. Площадь под графиком кусочно – линейной функции на отрезке составит . Суммируя площади по всему отрезку интегрирования, получим вновь формулу трапеций. Можно показать, что формула трапеций – формула второго порядка точности. Погрешность вычисления интеграла с помощью этой формулы (это можно показать) не превышает , т.е. в два раза больше, чем по третьей формуле прямоугольников.
|