Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция 22. Однородные системы линейных дифференциальных уравнений с постоянными коэффициентами





 

Система линейных дифференциальных уравнений с постоянными коэффициентами может быть записана в виде

 

, где , (векторная форма записи)

или

(покоординатная форма записи).

Будем искать решение системы в виде .

Подставляя в уравнение системы, получаем

.

Получено уравнение для определения соответствующего собственному значению собственного вектора линейного оператора с матрицей . Система уравнений

или

имеет ненулевое решение только, когда определитель системы равен нулю, т.е.

.

Это – характеристическое уравнение системы линейных дифференциальных уравнений с постоянными коэффициентами. В развернутом виде его можно записать так:

.

Характеристическое уравнение представляет собой алгебраическое уравнение - го порядка относительно . Из основной теоремы высшей алгебры известно, что оно имеет ровно корней. Часть корней может быть действительными корнями, часть - комплексными, но комплексные корни встречаются только парами комплексно-сопряженных корней. Это следует из действительности коэффициентов характеристического уравнения и теорем Виета.

1. Рассмотрим случай, когда все собственные значения линейного оператора с матрицей (или все характеристические числа матрицы , что одно и то же) действительны и различны.

Из линейной алгебры известно, что действительным различным собственным значениям соответствуют линейно независимые собственные векторы , которые можно определить по собственным значениям из системы уравнений

или .

В развернутом виде эти уравнения для можно записать в виде

.

Теперь решения системы линейных однородных уравнений с постоянными коэффициентами будут

.

Проверим, что решения являются линейно независимыми. Составим определитель Вронского

, так как векторы линейно независимы и определитель из координат этих векторов отличен от нуля. Так как определитель Вронского отличен от нуля, то полученные решения линейно независимы. Так как этих решений ровно n, то они составляют фундаментальную систему решений. Следовательно, общее решение системы линейных однородных уравнений может быть записано в виде

.

Пример. , ,

 

,

,

 

2. Рассмотрим случай, когда среди корней характеристического уравнения имеются s простых корней .

Этот случай легко свести к предыдущему. Для каждого собственного значения (характеристического числа) отыщем собственный вектор из системы уравнений

.

Затем найдем соответствующие им решения из фундаментальной системы решений и запишем общее решение в виде

..

Вся разница с предыдущим случаем в том, что фундаментальная система решений не исчерпывается найденными решениями, есть еще решения, соответствующие другим корням характеристического уравнения.

 

3. Среди корней характеристического уравнения имеется простая пара комплексно сопряженных корней .

Справедливо утверждение, которое мы примем без доказательства: простой паре комплексно сопряженных корней соответствует пара комплексно сопряженных собственных векторов .

Запишем формально соответствующую пару решений:

Эти решения комплексные. Вместо них мы (по линейности и теоремам о свойствах решений) можем взять решения Общее решение можно записать в виде:

..

Пример.

.

 

4. Среди корней характеристического уравнения встречаются кратные действительные корни или кратные пары комплексно сопряженных корней.

Этот случай мы не можем рассмотреть подробно, так как пока в курсе математики для инженеров не рассматривается жорданова форма матрицы, а именно к матрице с жордановыми клетками в общем случае приводится матрица системы (хотя матрица может привестись и к диагональному виду, и проблемы это не снимает). Укажем только алгоритм действий для действительного корня (или пары комплексно сопряженных корней) кратности r. Алгоритм этот основан на двух теоремах.

Теорема. Существует система из n линейно независимых векторов

, удовлетворяющих соотношениям

.

Векторы - присоединенные векторы, порожденные собственным вектором , - кратность корня , сумма для различных корней равна n.

Теорема. Каждому корню соответствует решений вида

……………………….

Для каждого кратного корня надо найти присоединенные векторы по первой теореме и построить решения по второй теореме.

Если порядок системы мал, то можно действовать проще.

Пусть матрица для корня, кратности будет иметь ранг .

Это означает, что для данного корня можно подобрать r линейно независимых собственных векторов и, соответственно, r линейно независимых решений вида в фундаментальной системе решений.

Пример. , .

Заметим, что матрица симметрическая, она приводится к диагональному виду ортогональным преобразованием. Следовательно, собственные векторы можно выбрать ортогональными, так как именно в базисе из собственных векторов матрица имеет диагональный вид, а ортогональное преобразование переводит один ортонормированный базис в другой.

Запишем характеристическое уравнение и найдем его корни.

.

.

. Кратность корня равна 2. Ранг матрицы равен n-r = 3 – 2 = 1. Из полученного уравнения можно выбрать координаты двух линейно независимых векторов. Например,

. Тогда .

или

.

Если действительному корню кратности r соответствует m(m<r) линейно независимых собственных векторов, то решение надо искать в виде

. Координаты векторов отыскиваются путем подстановки решения в систему дифференциальных уравнений и приравнивания коэффициентов при одинаковых степенях x.

Пример.

. Подставим x, y в систему уравнений, приравняем коэффициенты при в каждом уравнении, получим систему уравнений для определения неопределенных коэффициентов

, откуда получим . Можно выбрать, например,

1) , , тогда или

2) тогда







Дата добавления: 2015-04-16; просмотров: 670. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия