Фазовый поток
Рассмотрим решение задачи Коши автономной системы . Определим фазовый поток как оператор сдвига (по аргументу ) по фазовым траекториям системы = . Рассмотрим некоторую область фазового пространства (фазовым) объемом . Фазовый поток переводит эту область в область объемом . Справедлива теорема Лиувилля . Здесь мерой в фазовом пространстве может служить фазовый объем , (дивергенция векторного поля правых частей системы или след матрицы Якоби). Левая часть этой формулы представляет собой изменение фазового объема в единицу «времени» – аргумента, т.е. известный из теории поля поток векторного поля правых частей системы – фазовых скоростей. Приведенная формула аналогична формуле Остроградского – Гаусса в теории поля. Если , то . Если , то , что дает формулу для определения фазового объема , что совпадает с формулой Остроградского – Лиувилля определителя Вронского для линейных автономных систем. Поэтому определитель Вронского имеет смысл фазового объема (определитель всегда имеет смысл некоторого объема, вспомним хотя бы смысл смешанного произведения векторов).
|