Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модели канала связи





В случае аварии на трансформаторе одного из присоединений (T1), установленная на нём защита подаст напряжение на катушку включения соответствующего короткозамыкателя (SC1). Короткозамыкатель замкнёт свои контакты, создав искусственное замыкание на землю. На это замыкание среагирует защита магистральной ЛЭП, в зоне действия которой находится подстанция, и с помощью головного выключателя (Q) отключит всю подстанцию. Через небольшой промежуток времени на линии сработает АПВ и включит головной выключатель. За это время, которое называется бестоковой паузой, сработает только отделитель повреждённого трансформатора (E1) и отключит его от сети. Таким образом, не используя отдельный выключатель на каждое присоединение, возможно отключить повреждённый участок, оставив подстанцию в работе.

Отделитель – коммутационный аппарат, предназначенный для быстрого отсоединения поврежденного участка электрической сети в бестоковую паузу (реже для операций включения). По конструкции токоведущих частей отделители не отличаются от разъединителей. Их контактная система не приспособлена для коммутаций под рабочим током нагрузки. Для быстрого отключения (не более 0,5с) в отделителях используется энергия взведенной пружины привода.

В основном, в целях экономии, отделители применяются на подстанциях 35, 110 кВ вместо выключателей по стороне высшего напряжения. Отделители работают в связке с короткозамыкателями.

Отделителями допускаются операции отключения и включения:
- трансформаторов напряжения, зарядного тока шин и подстанционного оборудования всех напряжений (кроме конденсаторных батарей);
- параллельных ветвей, находящихся под током нагрузки, если разъединители этих ветвей шунтированы другими включенными разъединителями или выключателями;
- намагничивающих токов силовых трансформаторов и зарядных токов воздушных и кабельных линий;
- нейтралей трансформаторов и дугогасящих катушек при отсутствии в сети замыкания фазы на землю.

Вопрос № 1

Модели канала связи.

 

На основании представленной модели СПИ (см. рис. В.2), канал связи можно определить как совокупность устройств, обеспечивающих передачу сообщений (сигналов) между любыми двумя точками, лежащими по разные стороны среды распространения. В зависимости от положения точек, а, следовательно, и вида входных и выходных сигналов, канал связи может оказаться непрерывным, дискретным или дискретно-непрерывным, причем указанная классификация осуществима как по временному признаку, так и по состояниям входных и выходных сигналов.

Канал называется дискретным по времени, если входные и выходные сигналы доступны для наблюдения только в дискретные моменты времени. Если же входные и выходные сигналы наблюдаются непрерывно, канал называется непрерывным по времени. Канал называется дискретным по состоянию, если входные и выходные сигналы принадлежат дискретным множествам. Если же сигналы принимают значения из континуального множества, канал называется непрерывным по состоянию. Канал можно назвать дискретно-непрерывным, если один из сигналов (входной или выходной) дискретный, а другой – непрерывный.

Для теории информации физическая природа сигналов и шумов несущественна, поэтому, как и при кодировании источников, сигналы на входе и выходе канала будут рассматриваться как элементы некоторых абстрактных множеств. Начнем с рассмотрения дискретных по времени и состоянию каналов.

Пусть на вход канала поступает последовательность сообщений , где принадлежат некоторому множеству (алфавиту) X мощности L. Тогда множество всех последовательностей имеет мощность . На выходе канала наблюдается последовательность , принадлежащая множеству , причем мощность выходного алфавита в общем случае может и не совпадать с мощностью входного .

Для полного задания канала недостаточно описания входных и выходных сигналов – необходимо и статистическое описание процесса передачи сообщений. Наличие шума в канале может привести к трансформации одного и того же входного сигнала в различные выходные сигналы. Математически такие переходы описываются условными вероятностями получения на выходе последовательности при передаче последовательности . Дискретный канал оказывается полностью заданным, если для любой пары последовательностей и с элементами из дискретных множеств X и Y известны переходные вероятности .

В зависимости от свойств переходных вероятностей модели каналов допускают дальнейшую систематизацию.

Определение 3.1.1. Дискретный канал называется каналом без памяти, если

,

т.е. вероятности тех или иных значений текущего выходного символа определяются лишь текущим входным и не зависят ни от прошлых, ни от будущих входных символов.

Определение 3.1.2. Дискретный канал называется стационарным, если переходные вероятности не зависят от момента начала передачи и сохраняют неизменными свои значения на протяжении всего времени передачи.

Отметим, что распределение вероятностей входных сигналов не входит в описание канала, поскольку оно определяется источником сообщений, кодером источника и кодером канала, но не самим каналом. Задание вероятностей входных последовательностей , вместе с условными вероятностями позволяет рассчитать совместные вероятности входных и выходных, а вслед за тем и безусловные вероятности выходных последовательностей

.

Рассмотрим некоторые простейшие модели каналов связи.

Пример 3.1.1. (Двоичный канал). Множества входных и выходных сигналов двоичного канала состоят из двух элементов: . Введем краткие обозначения переходных вероятностей: . Наглядным является описание рассматриваемого канала графом рис. 3.1.

Определение 3.1.3. Двоичный канал с равными вероятностями ошибочных переходов называется двоичным симметричным каналом (ДСК).

Пример 3.1.2. Рассмотрим канал с двумя входными и тремя выходными состояниями, граф которого изображен на рис. 3.2. В данной модели третий выходной символ (?) отражает случай, когда канальные помехи делают входные нуль и единицу настолько мало различимыми, что выходное решающее устройство предпочитает выдать ответ «не знаю». Подобная ситуация именуется стиранием, поэтому рис. 3.2 соответствует ДСК со стиранием.

В литературе описано множество других моделей дискретных каналов: несимметричные, марковские, с пакетами ошибок и т. п.

 

Рис. 3.1 Рис. 3.2

 

 







Дата добавления: 2015-04-19; просмотров: 982. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия