Виды математических моделей ИО, примеры
Вид модели определяется типом связи между решениями (альтернативами, стратегиями) и результатами, который в свою очередь зависит от условий, в которых протекает операция и приходится принимать решения. 1. Решения принимаются в условиях определенности. Каждому решению можно поставить в соответствие определенный результат - детерминированный тип связи - детерминированные модели. Они "удобны в работе". Пример: Пусть в пункте A, возле которого проходит прямая дорога, расположена пожарная часть, а на лугу в точке C - некоторое строение. В случае возгорания строения пожарная машина должна быстро прибыть к месту пожара. Известны расстояния AB и BC и скорости движения машины по дороге и по лугу . Требуется определить кратчайший путь движения машины. Оптимальный маршрут машины надо искать в классе ломаных линий, включающих не более двух отрезков прямых. Такой путь полностью определяется точкой излома х- расстоянием от пункта A до места съезда машины с дороги. Критерий - время движения машины. Из ММ: каждой альтернативе в выборе маршрута (значению х) ставится в соответствие T. Детерминизм данной модели отражает определенность ситуации. 2. Решения принимаются в условиях риска. Между решениями и результатами - стохастическая связь: определенному решению может соответствовать более одного результата, вероятности появления которых известны - вероятностные (стохастические) модели. Если результат - значение критерия, то исход. постановка задачи (и модель!) некорректна: нельзя макс-ть или мин-ть случайную величину (критерий - одна из его вероятностных характеристик –мат. ожидание, дисперсия). Осреднение случайных аргументов и осреднение результатов, на которые первые влияют, не всегда одно и то же, т.к. в общем случае не выполняется равенство где - СВ. Пример: Пусть фирма "Апельсин" постоянно занимается продажей фруктов. Поставка и продажа фруктов осуществляется целыми контейнерами, а единица времени - неделя. Спрос на фрукты C колеблется случайным образом, но вероятность спроса в случайно взятую неделю P (C) известна. При заключении договора с поставщиком на очередной период фирма должна определить наиболее выгодное для нее количество контейнеров, которое будет поставляться еженедельно, если известны прибыль от реализации одного контейнера и убыток при его невостребовании. Так как спрос случаен, то и результат - доход за неделю D, для фиксированного числа заказываемых контейнеров n будет случайной величиной: в случае, когда спрос превысит предложение, то есть при C>n, D = dn, если же предложение окажется выше спроса (C Ј n), доход D = dC- (n-C) b. Критерий – мат. ожидание дохода за неделю, так как его максимизация обеспечит максимум дохода за весь период. Модель задачи будет иметь вид:
Расчет для исходных данных =30, =5 и вероятности спроса:
Вычисляем средний спрос: . Оптимальное решение n * =4, при котором средний доход составляет 81.5. Однако наличие случайных факторов не всегда влечет за собой неоднозначность результатов. Возможны случаи, когда элементарные составляющие процесса или системы ведут себя случайно, а результаты системы в целом не случайны (идеальный газ, поведение которого подчиняется детерминированному закону Бойля-Мариотта). Неслучайное поведение на макроуровне при наличии элементов случайности на микроуровне называют стохастическим детерминизмом. 3.Решения принимаются в условиях неопр-ти, вероятностные характеристики результатов неизвестны. ММ, описывающие неопределенный тип связи, разнообразны и не имеют единого названия. В частности, к этому классу относятся матричные модели, модели типа "игра", "аукционный торг", нечеткие модели. Во многих случаях ситуацию неопределенности можно представить матрицей вида
(где - результат выбора альтернативы при усл., что среда окажется в состоянии ; - прибыль, доход, выигрыш, затраты, проигрыш, убытки и т.п.). Нужно определиться с принципом оптимальности, на основе которого будут сравниваться альтернативы. Принцип оптимальности зависит от точки зрения на ситуацию ЛПР, его отношения к риску, от предположений отн-но поведения среды. 1. Принцип гарантированного рез-та. (представление, что среда ведет себя наихудшим образом) – максиминная альтернатива. Эффективность каждой альтернативы оценивается наихудшим из исходов, возможных при выборе данной альтернативы. Гарантируется, что будет не хуже, при любом фактическом состоянии среды. Наилучшее решением - выбор той альтернативы, которая имеет наилучший гарантированный результат. Если имеет смысл прибыли . 2. Критерий Сэвиджа – принцип гарант. сожалений - аналогичный прием, но по отношению к преобраз. матрице - матрице риска , где ,риск - это разность между максимально возможным выигрышем при -м состоянии среды и выигрышем при выборе -й альтернативы в условиях незнания о фактическом состоянии среды. Цель - уменьшение риска (минимакс) ,. 3. Критерия Гурвица (комбинированный) где =[0,1] - коэффициент риска. Промежуточные значения отражают разный уровень риска ЛПР. 4. Критерием Лапласа. ЛПР считает, что все состояния равновозможны:
В соответствии с критерием выгоднее А1, однако видно, что выгоднее А2
|