Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Жесть, ответ короче вопроса, блин и больше инфы не ма в официальных источника,. поэтому, инфа с инета осторожней с обозначениями могут быть расхождения





При ортогональном преобразовании сохраняются длины векторов и углы между ними.

 

 

39. Как вычисляется матрица линейного оператора при изменении базиса?

 

Обозначим через А матрицу некоторого линейного оператора в старом базисе, а через В – матрицу того же оператора в новом базисе. Если обозначить через Х и Y – одностолбцовые матрицы, элементами которых являются координаты векторов прообраза и образа в старом базисе, а через X’ и Y’ – одностолбцовые матрицы, элементами которых являются координаты векторов – прообраза и образа в новом базисе, тогда

Y = AB; (1) Y’ = BX’.(2)

Обозначив через Т – матрицу поворотоа координатной системы, будем иметь:

X = TX’;(3)Y = TY’.(4)

Подставив (1) и (3) в (4), получим:

TY’= ATX’, откуда:

Y’ = T-1ATX’. Сравнивая последнее равенство с (2) и используя определение равенства матриц, сможем написать выражение для матрицы рассматриваемого оператора в новом базисе B = T-1AT.

40. Какое подпространство линейного пространства называется инвариантным относительно линейного оператора?

Пусть в линейном пространстве R задан линейный оператор A. Подпространство R′ линейного пространства R называется инвариантным относительно оператора A, если для всякого вектора x из подпространства R′ следует, что вектор Ax так же принадлежит R′.

41. При каком условии вектор инвариантного подпространства оператора будет являться собственным вектором этого оператора?

Всякий (ненулевой) вектор, принадлежащий одномерному инвариантному подпространству, оператора A называется собственным вектором оператора A, то есть вектор x ≠ 0 называется

собственным вектором оператора A, если оператор A переводит вектор x в коллинеарный ему вектор: Ax = lx,

где число l называется собственным значением (собственным числом) оператора A, соответствующим собственному вектору x.

42. Как выглядит характеристическое уравнение оператора?

Пусть e1,..,en – базис n- мерного пространства Rn и A – некоторый линейных оператор. Допустим, что вектор х = ∑xkek есть собственный вектор оператора A, так что Ax = lx, где l – собственное значение, соответствующее собственному вектору x.

Mожем записать последнее равенство в координатной форме:

a 11x1+…+ a 1nxn = lx1,

a 21x1+…+ a 2nxn = lx2,

a n1x1+…+ a nnxn = lxn,

где x1,…,xn – координаты вектора х в выбранном базисе, а аij – элементы матрицы А линейного оператора А в базисе е. систему можно записать в виде:

(a 11-l)x1+…+ a 1nxn = 0,

a 21x1+…+ a 2nxn = 0,

a n1x1+…+(a nn - l)xn = 0.

Т.к. искомый собственный вектор не нулевой, то среди его координат х1,…,xn должна быть хоть одна отличная от нуля, а это значит, что система должна иметь ненулевое решение. Для этого необходимо и достаточно, чтобы ее определитель был равен нулю:

Данное уравнение называется характеристическим уравнением оператора А.

 

43. Как вычисляются собственные вектора и собственные числа оператора в конечномерном пространстве?

Составляется характеристическое уравнение:

 

Находятся l. Подставив l в систему:

(a11-l)x1+…+a1nxn = 0,

a21x1+…+a2nxn = 0,

an1x1+…+(ann - l)xn = 0,

найдем координаты собственного вектора оператора. Если все n корней характеристического уравнения вещественны и различны, то можно найти n различных собственных векторов оператора А, подставляя последовательно все n корней в систему.

44. Каким свойством обладает матрица линейного оператора, характеристичес­кое уравнение которого имеет различных вещественных корней?

В n-мерном пространстве матрица всякого линейного оператора характеристическое уравнение которого имеет n различных вещественных корней, в базисе из его собственных векторов диагональна и ее диагональные элементы есть собственные значения оператора.

 

45. При выполнении какого условия, оператор называется симметричным?

Оператор A, действующий в евклидовом пространстве R, называется симметричным, если для любых векторов x и y пространства R имеет место равенство: (Ax,y) = (x,Ay).

Важно отметить, что в n-мерном евклидовом пространстве матрица A симметричного оператора в любом ортогональном нормированном базисе совпадает со своей транспонированной матрицей, то есть A есть симметричная матрица. Верно и обратное утверждение: каждый оператор Å, имеющий в некотором ортогональном и нормированном базисе симметричную матрицу, является симметричным оператором.

46. Каким свойством обладают собственные векторы симметричного оператора, отвечающие различным собственным значениям?

Теорема. Собственные векторы симметричного оператора A, отвечающие различным собственным значениям, взаимно ортогональны.

Доказательство. Пусть имеют место равенства

Ax1 = l1x1, (1)

Ax2 = l2x2,(2)

где l1 и l2 – собственные значения оператора А, причем l1<> l2.

Умножим равенство (1) скалярно на х2, а (2) на ч1 и вычтем второе из первого. Тогда можем написать

(Ах1,x2) – (Ax2,x1) = (l1 - l2)(x1,x2) (3)

Так как оператор A симметричный, то левая часть равенства (3) равна нулю, а это значит, что при l1<> l2 выполняется равенство (x1,x2) =0, что и требовалось доказать.

 

47. Сколько взаимно ортогональных собственных векторов имеет симметрич­ный оператор в n ;мерном евклидовом пространстве?

Теорема. Симметричный оператор A в n-мерном евклидовом пространстве R имеет n взаимно ортогональных собственных векторов.







Дата добавления: 2015-04-19; просмотров: 465. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия