Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Следовательно, для затухания переходного процесса (т.е. для устойчивости САУ) необходимо, чтобы вещественные части корней и вещественные корни были отрицательными





Корни характеристического уравнения можно представить в виде точек на комплексной плоскости величины S (рис. 4.6).

 

Imaginaire (фр.) - мнимый

 

Reel (фр.) -действительный

 

Рис. 4.6. Плоскость корней характеристического уравнения

Для устойчивости линейной системы необходимо и достаточно, чтобы все корни лежали слева от мнимой оси плоскости корней. Вся левая полуплоскость представляет собой область устойчивости. Мнимая ось ω; плоскости корней является границей устойчивости системы. Выделяют три типа границ устойчивости, которые характеризуются соответственно:

1) нулевым корнем S1=0;

2) парой чисто мнимых корней S1,2= ;

3) бесконечно удаленным корнем S1;

В первом случае граница устойчивости называется апериодической. Это означает, что в характеристическом уравнении (4.3) отсутствует свободный член an =0. Дифференциальное уравнение (4.1) в этом случае может быть записано в виде

.

Система будет устойчивой относительно скорости изменения py(t), а отклонение регулируемой величины y(t) может принимать произвольные значения. Систему называют нейтрально устойчивой.

Во втором случае имеем колебательную границу устойчивости. Система имеет незатухающие гармонические колебания с постоянной амплитудой (4.5,г).

В третьем случае вещественный корень может попасть из левой полуплоскости в правую проходя через бесконечность. В этом случае слагаемое в выражении (4.2) обращается в нуль. Это соответствует понижению порядка дифференциального уравнения на единицу. В этом случае а0=0.

Граница устойчивости третьего типа встречается редко.

 







Дата добавления: 2015-04-19; просмотров: 499. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия