Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Следовательно, для затухания переходного процесса (т.е. для устойчивости САУ) необходимо, чтобы вещественные части корней и вещественные корни были отрицательными





Корни характеристического уравнения можно представить в виде точек на комплексной плоскости величины S (рис. 4.6).

 

Imaginaire (фр.) - мнимый

 

Reel (фр.) -действительный

 

Рис. 4.6. Плоскость корней характеристического уравнения

Для устойчивости линейной системы необходимо и достаточно, чтобы все корни лежали слева от мнимой оси плоскости корней. Вся левая полуплоскость представляет собой область устойчивости. Мнимая ось ω; плоскости корней является границей устойчивости системы. Выделяют три типа границ устойчивости, которые характеризуются соответственно:

1) нулевым корнем S1=0;

2) парой чисто мнимых корней S1,2= ;

3) бесконечно удаленным корнем S1;

В первом случае граница устойчивости называется апериодической. Это означает, что в характеристическом уравнении (4.3) отсутствует свободный член an =0. Дифференциальное уравнение (4.1) в этом случае может быть записано в виде

.

Система будет устойчивой относительно скорости изменения py(t), а отклонение регулируемой величины y(t) может принимать произвольные значения. Систему называют нейтрально устойчивой.

Во втором случае имеем колебательную границу устойчивости. Система имеет незатухающие гармонические колебания с постоянной амплитудой (4.5,г).

В третьем случае вещественный корень может попасть из левой полуплоскости в правую проходя через бесконечность. В этом случае слагаемое в выражении (4.2) обращается в нуль. Это соответствует понижению порядка дифференциального уравнения на единицу. В этом случае а0=0.

Граница устойчивости третьего типа встречается редко.

 







Дата добавления: 2015-04-19; просмотров: 499. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия