Студопедия — Критерий устойчивости Гурвица
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерий устойчивости Гурвица






Немецким математиком А. Гурвицем был разработан алгебраический критерий устойчивости в форме определителей, составленных из коэффициентов характеристического уравнения системы.

Из коэффициентов характеристического уравнения (4.6) составляют сначала главный определитель Гурвица

(4.8)

 

по следующему правилу: по главной диагонали определителя от верхнего левого угла выписывают по порядку все коэффициенты, начиная с и заканчивая . Затем каждый столбец определителя дополняют так, что бы вверх от диагонали индексы коэффициентов увеличивались, вниз – уменьшались. В случае отсутствия в уравнении какого-либо коэффициента и вместо коэффициентов с индексом меньше 0 и больше n пишут нуль.

Отчеркивая в главном определителе Гурвица, как показано пунктиром, диагональные миноры, получаем определители Гурвица низшего порядка.

Критерий Гурвица формулируется так:

система автоматического управления устойчива, если при положительны все определителей Гурвица, получаемых из (4.8), т.е.

; , ; ; …,

. (4.9)

Это необходимое и достаточное условие устойчивости.

Предпоследнее неравенство в (4.9) есть , поэтому последнее неравенство сводится к .

Система находится на границе устойчивости, если и все предыдущие определители Гурвица положительны. Условие распадается на два: или . В первом случае система находится на границе апериодической устойчивости (нейтральная устойчивость) (один из корней характеристического уравнения равен нулю); во втором случае – на колебательной границе устойчивости (два сопряженных мнимых корня).

Наконец, граница устойчивости, соответствующая бесконечному корню, будет, согласно уравнению (4.6) при . В самом деле, если все слагаемые в уравнении (4.6) разделить на , то получим

.

Отсюда видно, что при имеем , а значит .

Раскрывая определители Гурвица для характеристических уравнений первого, второго, третьего и четвертого порядков, можно получить следующие условия устойчивости:

1) для уравнения первого порядка

, условия устойчивости , ; (4.10)

2) для уравнения второго порядка

,

условия устойчивости

, , , т.е. ; (4.11)

3) для уравнения третьего порядка

,

, (4.12)

условия устойчивости , , , .

С учетом того, что и коэффициент . Из следует при положительности всех коэффициентов;

4) для уравнения четвертого порядка

,

, (4.13)

условия устойчивости

, , , ; (4.14)

; ;

Преобразуем

. (4.15)

Таким образом, для уравнений третьего и четвертого порядков, кроме положительности коэффициентов, необходимо соблюдение дополнительных неравенств (4.12) и (4.14).

Для уравнения пятой степени условия устойчивости по критерию Гурвица получаются достаточно громоздкими. Для уравнений высоких порядков () в лучшем случае можно получить ответ о том, устойчива или неустойчива САУ. В случае неустойчивой системы критерий не дает ответа на то, каким образом надо изменять параметры системы, чтобы сделать ее устойчивой. Это обстоятельство привело к поискам других критериев, которые были бы более удобными в инженерной практике.

25. Принцип аргумента. Критерий Михайлова. Правило перемежаемости корней X(ω), Y(ω).

 

Частотные критерии устойчивости позволяют судить об устойчивости замкнутых САУ по виду их частотных характеристик без определения корней характеристического уравнения. Однако при этом необходимо знать, устойчива или нет условно разомкнутая САУ.

Частотные критерии позволяют определить устойчивость замкнутой САУ по экспериментально полученным частотным характеристикам звеньев и всей САУ. Частотные критерии имеют простую геометрическую интерпретацию и наглядность, позволяют сравнительно легко исследовать устойчивость систем высокого порядка.

Принцип аргумента. В основе частотных критериев устойчивости лежит следствие из известного в теории функций комплексного переменного принципа аргумента.

Рис. 4.8. Комплексная плоскость корней

Рассмотрим характеристический полином (левую часть характеристического уравнения) замкнутой САУ

(4.16)

с положительными коэффициентами (необходимое условие устойчивости). Этот полином, в соответствии с теоремой Безу, представим в виде произведения сомножителей

,

где - корни характеристического уравнения .

На комплексной плоскости корней каждый корень геометрически может быть изображен вектором, проведенным из начала координат к точке (рис. 4.8, а). Длина этого вектора равна модулю комплексного числа, а угол, образованный вектором с положительным направлением действительной оси, равен аргументу или фазе комплексного числа.

Величины геометрически изображаются векторами, проведенными из точки к произвольной точке (рис. 4.8, б). В частном случае при получим вектор

. (4.17)

Концы элементарных векторов будут находиться на мнимой оси в точке (рис. 4.8, в).

Модуль вектора равен произведению модулей элементарных векторов и

,

аргумент равен сумме аргументов элементарных векторов

. (4.18)

Условимся считать вращение векторов против часовой стрелки положительным. Тогда при изменении от до каждый элементарный вектор повернется на угол , если корень , расположен слева от мнимой оси, и на угол - , если корень расположен справа от мнимой оси (рис. 4.9).

 

Рис. 4.9. Определение знака аргумента характеристического полинома

Предположим, что полином имеет правых корней и левых корней. Тогда при изменении от до приращение аргумента вектора , равное сумме углов поворота векторов , равно

. (4.19)

Очевидно, что при изменении частоты от 0 до изменение аргумента вектора будет вдвое меньше

. (4.20)

В основу всех частотных критериев устойчивости положено условие (4.20).







Дата добавления: 2015-04-19; просмотров: 1013. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия