Критерий устойчивости Гурвица. Характеристическое уравнение (1, 2, 3, 4 порядков)
Вычисление корней характеристического уравнения высокой степени не всегда удобно. Поэтому были выведены критерии устойчивости, позволяющие судить об устойчивости САР непосредственно по коэффициентам характеристического уравнения. В ТАУ наибольшее применение из алгебраических критериев устойчивости получили критерий Рауса и критерий Гурвица. Предварительно покажем, что необходимым (но не достаточным) условием устойчивости системы является положительность всехкоэффициентов характеристического уравнения. (4.6) Если же есть хотя бы один отрицательный коэффициент, то САУ наверняка неустойчива. Действительно, в соответствии с теоремой Безу, уравнение (4.6) можно представить в виде произведения множителей, содержащих корни , , …, характеристического уравнения . (4.7) Коэффициент всегда можно сделать положительным. Пусть все вещественные корни уравнения (4.6) отрицательные, а комплексные корни имеют отрицательные вещественные части (они всегда попарно сопряженные) , , …, . Подставив их в уравнение, получим . Средние два сомножителя дают и после перемножения всех скобок получим в уравнении только положительные коэффициенты. Это и требовалось доказать. Необходимое условие устойчивости становится и достаточным для уравнения первой и второй степени. В этом легко убедится прямым нахождением корней: 1) , ; 2) , . Для уравнений третьей и выше степеней это условие лишь необходимо, но недостаточно, ибо оно обеспечивает отрицательность только вещественных корней. Комплексные корни могут иметь положительные вещественные части.
|