Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение границ устойчивости по критерию Михайлова





 

Все три типа границ устойчивости можно объединить равенством , включая и . В случае нулевого корня отсутствует свободный член характеристического полинома , и кривая Михайлова идет из начала координат. Если характеристическое уравнение системы имеет корень , то , откуда получаем

и . (4.27)

Графически это означает попадание одной точки кривой Михайлова () в начало координат. Величина есть частота незатухающих колебаний системы (система – на границе устойчивости).

Для границы устойчивости третьего типа (бесконечный корень) конец кривой Михайлова перебрасывается, при этом коэффициент характеристического полинома будет проходить через нулевое значение, меняя знак плюс на минус.

Необходимо помнить, что все остальные корни характеристического уравнения должны иметь отрицательные вещественные части.

Рассмотрим применение критерия Михайлова для определения условия устойчивости САУ, приведенной в параграфе 4.2 (рис. 4.7).

Характеристический полином замкнутой САУ

.

Характеристический комплекс .

Вещественная и мнимая части ,

.

Найдем условие устойчивости из требования чередования корней X(w) и Y(w): . Корень находится из уравнения :

.

Отсюда имеем первое условие устойчивости: . Корень находится из уравнения :

.

Подставляя эти значения в требуемое условие , получаем второе условие устойчивости системы

.

Это условие, конечно, совпадает с полученным ранее условием устойчивости по критерию Гурвица.







Дата добавления: 2015-04-19; просмотров: 586. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия