Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение границ устойчивости по критерию Михайлова





 

Все три типа границ устойчивости можно объединить равенством , включая и . В случае нулевого корня отсутствует свободный член характеристического полинома , и кривая Михайлова идет из начала координат. Если характеристическое уравнение системы имеет корень , то , откуда получаем

и . (4.27)

Графически это означает попадание одной точки кривой Михайлова () в начало координат. Величина есть частота незатухающих колебаний системы (система – на границе устойчивости).

Для границы устойчивости третьего типа (бесконечный корень) конец кривой Михайлова перебрасывается, при этом коэффициент характеристического полинома будет проходить через нулевое значение, меняя знак плюс на минус.

Необходимо помнить, что все остальные корни характеристического уравнения должны иметь отрицательные вещественные части.

Рассмотрим применение критерия Михайлова для определения условия устойчивости САУ, приведенной в параграфе 4.2 (рис. 4.7).

Характеристический полином замкнутой САУ

.

Характеристический комплекс .

Вещественная и мнимая части ,

.

Найдем условие устойчивости из требования чередования корней X(w) и Y(w): . Корень находится из уравнения :

.

Отсюда имеем первое условие устойчивости: . Корень находится из уравнения :

.

Подставляя эти значения в требуемое условие , получаем второе условие устойчивости системы

.

Это условие, конечно, совпадает с полученным ранее условием устойчивости по критерию Гурвица.







Дата добавления: 2015-04-19; просмотров: 586. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия