Спектральный состав тока при бигармоническом воздействии
Пусть к нелинейному резистивному элементу подведено бигармоническое воздействие, т. е. колебание в виде суммы двух гармонических колебаний разных частот и постоянное напряжение смещения U0 U = U0 + Um1cos(w1t + j1) + Um2cos(w2t + j2). Предположим, что ВАХ нелинейного элемента описывается полиномом i(t) = a 0 + a 1(n - U0) + a 2(n - U0)2 +...+ a n(n - U0)n Тогда ток в цепи НЭ равен: (11.13) Для анализа спектра тока аппарат рядов Фурье здесь не применим, так как в общем случае функция (11.13) не является периодической. Следует, как и при гармоническом воздействии на НЭ, воспользоваться формулами преобразования тригонометрических функций. При этом для квадратичного члена суммы (11.13) Допустим, что n = 3, т.е., что вольт - амперная характеристика нелинейного элемента описывается полиномом третьей степени. Тогда полученные выше выражения для i2(t) и i3(t) показывают, что ток в элементе кроме линейной состовляющей реакции i2(t) = a 1Um1cos(w1t + j1) + a 1Um2cos(w2t + j2) содержит также постоянную состовляющую, гармонические колебания с частотам 2w1 ,2w2,3w1 и 3w2. Перечисленные состовляющие спектра характерны и для воздействия на тот же элемент двух гармонических колебаний с частотами w1 и w2 порознь. При совместном же их воздействии в спектре реакции появляются колебания с частотами |w1 ± w2|, |2w1 ± w2| и |w1 ± 2w2|* (* Знак модуля в общем случае необходим, так как частота колебания не может быть отрицательной). Соответствующие колебания называются комбинационными, а их частоты - комбинационными частотами. Амплитуды комбинационных колебаний зависят от амплитуд обеих состовляющих бигармонического воздействия и в рассматриваемом примере для колебаний с частотами |w1 ± w2|, |2w1 ± w2| и |w1 ± 2w2| пропорциональны соответственно произведениям Um1Um1, и Аналогичные выкладки для остальных членов суммы (11.13) приводят к заключению, что при бигармоническом воздействии на нелинейный элемент с полиномиальной вольт-амперной характеристикой спектр реакции содержит гармонические колебания с частотами w = | l w1 ± mw2| (11.14) где l = 0, 1, 2,..., n; m = 0, 1, 2,..., n, l + m £n. Сумма l + m определяет порядок комбинационного колебания с частотой (11.14). Так, комбинационные колебания 4-го порядка -это колебание с частотами 4w1, |3w1 ± w2|, |2w1 ± 2w2| и |w1 ± 2w2| и 4w2. Комбинационные частоты при воздействии суммы гармонических колебаний. В общем случае входное воздействие можно представить бесконечной суммой В зависимости от степени n аппроксимирующего полинома в спектре тока, протекающего через нелинейный элемент, появляются комбинационные частоты вида: | l w1 ± mw2 ± sw3 ± k w k ±...|; l + m + s +... + k +... £ n; l, m, s, k - целые положительные числа. Например, при воздействии на НЭ с ВАХ в виде полинома второй степени суммы трех гармонических колебаний в спекрте тока, помимо постоянной состовляющей и первых двух гармоник кажддй частоты, присутствуют комбиционные частоты |w1 ± w2|; |w1 ± w3|; |w2 ± w3|. При аппроксимации полиномом третьей степени дополнительно появляются третьи гармоники с частотами 3w1 ,3w2 ,3w3 и колебания с комбинационными частотами типа |w1 ± w2 ± w3|, |2w1 ± w3|, |w1 ± 2w3| и т.д
|