Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линии параболического типа





Пусть КВП задана уравнением вида (1) и является кривой

параболического типа, т.е. I2=О. Тогда I1 О. Действительно,

если I111+a22=О, то I12112222+2a11a22=О, т.е.

 

(*)

 

Так как I2=a11a22—а122=О, то из (*) следует, что -(a112/2) -(а222/2)=а122.. Значит, a11=a22=a12=0 – противоречие с тем, что уравнение (1) — уравнение кривой второго порядка.

Заметим, что если в уравнении (1) а12 О, то путем поворота системы координат 0ХУ можно придти к уравнению вида (14)

 

Так как I1=а'1122 О, I2=a'11а'22=О, то один из коэффициентов a'11 и а'22 равен нулю, а другой не равен нулю.

Будем считать, что а'11=О, а'22 0 (случай а'11 О, a'22=0

рассматривается аналогично). Тогда I1=a'22 и уравнение (14)

можно записать так:

 

(25)

 

Осуществим теперь параллельный перенос:

 

, т.е.

. (26)

Тогда x"=x' и у"=у'+а'23/I1. Значит, в новой системе координат

О"Х"У" уравнение КВП примет вид:

 

(27)

 

где

 

Теорема. Пусть уравнение (1) — есть уравнение параболического типа. Тогда при I3 0 это уравнение параболы, а при I3=0 — это уравнение либо пары параллельных действительных прямых, либо пары мнимых параллельных прямых.

 

Доказательство. Итак, для уравнения (1)

 

(28)

Так как I1 О, то при I3 0 следует, что а"13 О, а при I3=0 получаем, что а"13=О. Тогда уравнение (27) можно записать так

при I3 О, (29)

 

при I3=О, (30)

Очевидно, что уравнение (29) — уравнение параболы. Чтобы

оно стало каноническим, достаточно осуществить параллельный перенос системы координат 0"Х"У":

 

y"=Y;

 

и обозначить – а "13/I1=р. Тогда в системе координат ОХУ получаем уравнение

У2 = 2рХ.

 

Уравнение (30) можно записать так:

 

(31)

 

Тогда, если a"33/I1<0, то из (31) получаем

 

 

– пара параллельных прямых: и

Если же а"33/I1>0, то уравнению (31) не удовлетворяют

координаты ни одной точки плоскости, т.е. геометрический образ является мнимым. Поэтому и говорят, что в атом случае получаем пару мнимых параллельных прямых. Теорема доказана.

 







Дата добавления: 2015-06-15; просмотров: 441. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия