Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линии эллиптического и гиперболического типов





Если I2>О, то уравнение (17), согласно (15), можно записать так:

 

(18)

Так как

 

то а11а22>О, т.е. коэффициенты а11 и а22 оба отличны от нуля и имеют одинаковые знаки, совпадающие со знаком I1=a1122. Будем в дальнейшем считать, что I1>О, т.е. а11>0 и а22>0 (если это не так, то умножим обе части (18) на — 1). Заметим, что при такой операции (нормировании) знак I2 не меняется.

 

Теорема. Пусть уравнение (1) КВП — эллиптического типа (I2>О) нормировано так, что I1>О. Тогда при I3<0 — это уравнение эллипса. При I3=0 — единственная точка (уравнение вырожденного эллипса). При I3>0 — пустое множество точек (уравнение мнимого эллипса).

 

Доказательство. Так для уравнения (18), I1=а"11+а"22,

I2=а"11а22, то из условия I1>О, I2>0 следует, что а"11>О, а"22>0. Поэтому уравнение (18) можно записать так:

, при I3<0; (19)

, при I3=0; (20)

, при I3>0; (21)

 

Теорема доказана.

 

Теорема. Пусть уравнение (1) - КВП гиперболического типа (I2<0). Тогда при I3 0 — это уравнение гиперболы, а при I3=0 - пара пересекающихся прямых.

Доказательство. Так как для уравнения (18):

 

 

то из I2<0 следует а"11, и а"22 имеют разные знаки. Пусть а"11>0, а"22<О, тогда уравнение (18) можно записать так:

 

, при I3<0; (22)

, при I3=0; (23)

, при I3>0; (24)

 

Уравнение (22) задает гиперболу, симметричную относительно

оси О"Y".

 

Уравнение (23) можно переписать так:

 

 

– пара пересекающихся прямых в системе координат 0"Х"Y".

Уравнение (24) — каноническое уравнение гиперболы.

Случай, когда а11"<О, а22">0 рассматривается аналогично.

Теорема доказана.

 







Дата добавления: 2015-06-15; просмотров: 440. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия