Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полярное уравнение эллипса, гиперболы, параболы





Выведем полярное уравнение для отличного от окружности эллипса, параболы или правой ветви гиперболы. Для этого совместим полюс полярной системы координат с левым фокусом эллипса (правым фокусом гиперболы) или единственным фокусом параболы, а полярную ось направим перпендикулярно директрисе d, соответствующей фокусу. Обозначим через F, р и ε соответственно фокус, фокальный параметр и эксцентриситет кривой. Пусть М — произвольная точка кривой, МF = r — полярный радиус точки М, φ — ее полярный угол. Тогда

полярное уравнение эллипса, отличного от окружности, параболы, правой ветви гиперболы.

Для левой ветви гиперболы

 

 

полярное уравнение левой ветви гиперболы.

 

 

 

Классификация кривых второго порядка (КВП)

Уравнение вида

 

a x2+ b ху+ с у2+ d x+ е у+ f =0, (1)

 

где a²+ b²+ c² ≠ 0, называется уравнением кривой второго порядка в прямоугольноу системе ккординат OXY. Преобразуем систему координат таким образом, чтобы уравнение (1) приняло наиболее простой вид.

 

1. Если в уравнении коэффициент b ≠ 0, то можно повернуть систему координат OXY на угол α такой, что в новой системе координат O’X’Y’ уравнение (1) не будет содержать член с произведением x’y’.

Действительно, согласно формулам поворота x = x’cosα – y’sinα, y = y’sinα + y’cosα.. Подставляя значения x и y в (1) легко подсчитать, что коэффициент при x’y’ примет вид

 

-2 a cosα sinα + b ²cos²α - b ²sin²α + 2 c sinα cosα.

 

Упрощая, получаем

- a sin2α + b cos2α + c sin2α = 0,

 

(a - c)sin2α = b cos2α, т.е.

 

,

Таким образом, в дальнейшем предполагаем, что уравнение КВП имеет вид

a x2+ b ху+ с у2+ d x+ е у+ f =0. (2)

 

2. Если в уравнении (2) а ≠ 0 и d ≠ 0, либо с ≠ 0 и е ≠ 0, то, осуществляя параллельный перенос системы координат ОХУ, получаем уравнение КВП, не содержащее член с х, соответственно у.

Действительно, пусть а ≠ 0, d ≠ 0. Выделим полный квадрат при переменной х в (2).

 

Применим формулы параллельного переноса

, ,

 

Тогда уравнение примет вид

где . Если же с ≠ 0 и е ≠ 0, то аналогичным образом исключаем в полученном уравнении член с у.

Итак можно считать, что КВП представляется одним из трёх видов уравнений:

ах ² + by ² + c = 0;

ах ² + by + c = 0;

аy ² + + c = 0.

 

Рассмотрим случаи:

1) с ≠ 0. Тогда

Если – (а/с) › 0 и – (b/c) › 0, то это уравнение эллипса.

Если – (a/c) ‹ 0 b – (b/c) ‹ 0, то получаем пустое множество точек на плоскости.

Если – (a/c) › 0 и – (b/c) ‹ 0, то уравнение гиперболы.

Аналогичным образом получам гиперболу вытянутую вдоль оси ОУ.

2) с = 0. Тогда ах ² + by ² = 0;

Если a и b – разных знаков, то всегда можно считать, что а › 0,

b ‹ 0.

Уравнение будет задавать две пересекающиеся прямые ax by = 0

Если же a и b одного знака, то уравнению удовлетворяет единственная точка О (0,0).

Вывод: любая кривая второго порядка является эллипсом, гиперболой, параболой, парой пересекающихся прямых, парой параллельных прямых, прямой, точкой или пустым множеством.

Укажем еще один способ классификации КВП.

 







Дата добавления: 2015-06-15; просмотров: 615. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия