Уравнение прямой в пространстве
Очевидно, что прямую в пространстве можно задать как линию пересечения двух плоскостей α1 и α2. Тогда в произвольной афинной системе координат прямая задается системой двух линейных уравнений
- общее уравнение прямой или уравнение прямой в общем виде.
Пусть l – прямая. Тогда ее положение в пространстве однозначно определяется заданием ее направляющего вектора Переходя к координатам, получим x - x 0 = tm, y - y 0 = tn, z - z 0 = tp - параметрические уравнение прямой. Выражая параметр t, получим
- каноническое уравнение прямой, проходящей через точку М0(х0 y0,z0) параллельно вектору
Последнее уравнение равносильно
- общее уравнение прямой.
Пусть M1{ x 1, у 1, z 1) и М2(х 2, у 2, z 2) – точки прямой. Тогда - уравнение прямой, проходящей через две заданные точки.
Наоборот, пусть задано общее уравнение прямой. Взяв произвольную точку М0(х0,у0,z0) прямой получаем
- каноническое уравнение прямой.
|