Коэффициенты корреляции. До сих пор мы выясняли лишь сам факт существования статистической зависимости между двумя признаками
До сих пор мы выясняли лишь сам факт существования статистической зависимости между двумя признаками. Далее мы попробуем выяснить, какие заключения можно сделать о силе или слабости этой зависимости, а также о ее виде и направленности. Критерии количественной оценки зависимости между переменными называются коэффициентами корреляции или мерами связанности. Значение коэффициента служит показателем интенсивности связи. Следует отметить, что коэффициенты корреляции выражают не причинную (обусловленность одного признака другим), а функциональную (взаимная согласованность изменения признаков) зависимость между признаками. Различают парную (между двумя признаками) и множественную (между несколькими признаками) корреляции. Две переменные коррелируют между собой положительно, если между ними существует прямое, однонаправленное соотношение. Положительная корреляция соответствует значениям 0 <r <1. Положительную корреляцию следует интерпретировать следующим образом: если значения одной переменной возрастают, то значения другой имеют тенденцию к возрастанию. Чем коэффициент корреляции ближе к 1, тем сильнее эта тенденция, и, наоборот, с приближением коэффициента корреляции к 0 тенденция ослабевает. Для словесного описания величин коэффициента корреляции применяется следующая таблица:
Пример сильной положительной корреляции служит зависимость между ростом и весом человека. (если, r = 0,83) Отсутствие корреляции определяется значением r = 0. Нулевой коэффициент корреляции говорит о том, что значения переменных никак не связаны друг с другом. Примером пары величин с нулевой корреляцией является рост человека и результат его IQ-теста. Две переменные коррелируют между собой отрицательно, если между ними существует обратное, разнонаправленное соотношение. Отрицательная корреляция соответствует значениям –1 < r < 0. Если значения одной переменной возрастают, то значения другой имеют тенденцию к убыванию. Чем коэффициент корреляции ближе к –1, тем сильнее эта тенденция, и, наоборот, с приближением к 0 тенденция ослабевает.
Для изучения взаимосвязи признаков, измеренных с помощью различных типов шкал, используются разные коэффициенты корреляции. В качестве коэффициента корреляции между переменными, принадлежащими порядковой шкале применяется коэффициент Спирмена, а для переменных, принадлежащих к интервальной шкале — коэффициент корреляции Пирсона (момент произведений). При этом следует учесть, что каждую дихотомическую переменную, то есть переменную, принадлежащую к номинальной шкале и имеющую две категории, можно рассматривать как порядковую. Коэффициент Спирмена равен +1, когда два ряда проранжированы строго в одном порядке, -1, когда два ряда проранжированы в строго обратном порядке, и равен нулю при полном взаимном беспорядочном расположении рангов. Коэффициент корреляции Пирсона равен +1 при строгой (полной) прямой взаимозависимости двух признаков, равен -1 при строгой (полной) обратной взаимозависимости.
Для начала мы проверим существует ли корреляция между переменными «возраст» и «готовность голосовать на выборах». Нужно выполнить следующие действия: · выбрать в меню команды Analyze (Анализ) Descriptive Statistics (Дескриптивные статистики) Crosstabs... (Таблицы сопряженности) · перенести переменную «возраст» в список строк, а переменную «готовность голосовать» — в список столбцов. · щелкнуть на кнопке Statistics... (Статистика). В диалоге Crosstabs: Statistics установить флажок Correlations (Корреляции). Подтвердить выбор кнопкой Continue. · В диалоге Crosstabs нужно отказаться от вывода таблиц, установив флажок Supress tables (Подавлять таблицы). Щелкнуть на кнопке ОК. Будут вычислены коэффициенты корреляции Спирмена и Пирсона, а также проведена проверка их значимости: Исходя из данных таблицы, можно сделать следующие заключения: Между переменными «возраст» и «готовность голосовать на выборах» существует слабая корреляция (заключение о силе зависимости), переменные коррелируют отрицательно (заключение о направлении зависимости). Следовательно, разнонаправленность соотношения можно интерпретировать следующим образом: чем моложе респонденты, тем ниже их готовность прийти на выборы, и наоборот, чем старше респонденты, тем чаще они готовы голосовать на выборах. Таким образом, электоральная активность респондентов в некоторой степени зависит от возраста респондентов.
Задание. 1. (по массиву данных opros.sav) с помощью коэффициентов корреляции определить направленность, характер и интенсивность связи между переменными «Как вы относитесь к политической деятельности?» и «Согласны ли Вы с утверждением - «политических деятелей не заботит что думают такие люди как я». 2. Исходя из задач и гипотез собственного исследования, выбрать переменные, удовлетворяющие условиям зависимости. Проанализировать данные на наличие зависимости переменных с помощью коэффициентов корреляции. Выяснить интенсивность, характер и направленность зависимости переменных.
|