Смачивание и несмачивание. Капиллярные явления
На границе соприкосновения различных сред может наблюдаться смачивание или несмачивание. На рисунках показана капля жидкости на поверхности другой, не смешивающейся с ней жидкости (рис. 7.9) и на поверхности твердого тела (рис. 7.10 и 7.11). На поверхностях раздела каждых двух сред (1 и 3, 2 и 1, 3 и 2) действуют силы поверхностного натяжения (показаны стрелками). Если эти силы разделить на длину окружности капли (границы трех сред), то получим соответственно σ13, σ21, σ32. Угол θ между смачиваемой поверхностью и касательной к поверхности жидкости, отсчитываемый через нее, называют краевым. За меру смачивания принимают величину
Если σ32 < σ13 (см. рис. 7.10), то θ < πr/2, и жидкость смачивает твердое тело, поверхность которого в этом случае называется гидрофильной. В случае σ32 < σ13 (см. рис. 7.11) θ > π/2, жидкость не смачивает тело, поверхность его в этом случае называют гидрофобной. Несмачивающая жидкость не протекает через малые отверстия в твердом теле. При |σ32 — σ13 |> σ21 краевой угол определить нельзя, так как cos θ не может быть больше единицы. В этом случае капля растекается по поверхности твердого тела до тех пор, пока не покроет всей его поверхности или пока не образуется мономолекулярный слой. Такой случай является идеальным смачиванием. К нему с некоторым приближением можно отнести растекание спирта или воды по чистой поверхности стекла, нефти по воде и пр.
и оказывает дополнительное по отношению к внешнему давление ∆р. Поверхностный слой подобен упругой оболочке, например резиновой пленке. Результирующая cил поверхностного натяжения искривленной поверхности направлена в сторону вогнутости (к центру кривизны). В случае сферической поверхности, радиус кривизны которой r, дополнительное давление
Из рис. 7.12 видно, что r =R/cos θ, где R — радиус капилляра.
Поэтому [(см. (7.24)] получаем
тогда
откуда высота поднятия жидкости в капилляре
Т. е. зависит от свойств жидкости и материала капилляра, а также от его радиуса. В случае несмачивания cos θ < 0 и формула (7.26) покажет высоту опускания жидкости в капилляре. Капиллярные явления определяют условия конденсации паров, кипения жидкостей, кристаллизации и т. п. Так, например, на молекулу Рассмотрим поведение пузырька воздуха, находящегося в капилляре с жидкостью. Если давление жидкости на пузырек с разных сторон одинаково, то оба мениска пузырька будут иметь одинаковый радиус кривизны, и силы дополнительного давления будут уравновешивать друг друга F1 = -F2 (рис. 7.14, а). При избыточном давлении с одной из сторон, например при движении жидкости, мениски деформируются, изменятся их радиусы кривизны (рис. 7.14, б), дополнительное давление ∆р с разных сторон станет неодинаковым. Это приведет к такому воздействию на жидкость со стороны пузырька воздуха (газа), которое затруднит или прекратит движение жидкости. Такие явления могут происходить в кровеносной системе человека. Попавшие в кровь пузырьки воздуха могут закупорить мелкий сосуд и лишить кровоснабжения какой-либо орган. Это явление, называемое эмболией, может привести к серьезному функциональному расстройству или даже летальному исходу. Так, воздушная эмболия может возникнуть при ранении крупных вен: проникший в ток крови воздух образует воздушный пузырь, пре
ствующий прохождению крови. Пузырьки воздуха не должны попадать в вены при внутривенных вливаниях. Газовые пузырьки в крови могут появиться у водолазов при быстром подъеме с большой глубины на поверхность, у летчиков космонавтов при разгерметизировании кабины или скафандра на большой высоте (газовая эмболия). Это обусловлено переходом азов крови из растворенного состояния в свободное — газообразное — в результате понижения окружающего атмосферного давления. Ведущая роль в образовании газовых пузырьков при уменьшении давления принадлежит азоту, так как он обусловливает основную часть общего давления газов в крови и не участвует газообмене организма и окружающего воздуха. ГЛАВА 8 Механические свойства твердых тел и биологических тканей Характерным признаком твердого тела является способность сохранять форму. Твердые тела можно разделить на кристаллические и аморфные. Так же как и в гл. 7, рассматриваемый материал имеет отношение к реологии и биореологии.
|