Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения типовых задач. 1.Является ли заданное отображение на своей естественной области определения непрерывным в точке ?





1. Является ли заданное отображение на своей естественной области определения непрерывным в точке ?

 

Пример 1. , ,, .

Решение. Очевидно, что заданное отображение определено на всем . Представим его в виде , где , , и покажем, что и непрерывны в любой точке . Пусть последовательность сходится к в . Тогда

.

Отсюда следует, что непрерывно.

Докажем непрерывность . Будучи непрерывной, функция ограничена на , т. е. . А так как равномерно на , то начиная с некоторого номера (почему?). Тогда

.

Отсюда следует, что в . Поэтому в силу произвольности отображение непрерывно в любой точке из .

 

Пример 2. .

 

Решение. Пусть последовательность сходится к в . Тогда

при .

Теперь в силу неравенства Коши-Буняковского,

.

(полученная оценка показывает также, что принадлежит при из ; поэтому отображение определено на всем ). Значит, – непрерывное отображение в точке .

 

Пример 3. .

Решение. Покажем, что отображение не является непрерывным. Возьмём последовательность , которая стремится к нулюв , поскольку

при .

Рассмотрим теперь выражение

.

Следовательно, последовательность нестремится к нулю при ,а потому нестремится к в .

Пример 4. .

Решение. Покажем, что отображение не является непрерывным. Заметим, что

.

Возьмем последовательность , которая сходится к нулю в , поскольку

при .

Имеем

при ,

а потому нестремится к в .

2. Является ли заданное отображение : а) непрерывным;

б) равномерно непрерывным; в) удовлетворяющим условию Липшица?

Пример 1. .

Решение. а) Пусть . Отображение является непрерывным, так как

(мы воспользовались неравенством ).

б) Покажем, что не является равномерно непрерывным. Возьмём . Тогда при , но

,

а значит, не стремится к нулю при . Это противоречит определению равномерной непрерывности (проверьте).

в) Так как не является равномерно непрерывным, то оно не удовлетворяет условию Липшица (почему?).

 

Пример 2. .

Решение. Покажем, что удовлетворяет условию Липшица с константой . Заметим, что

.

Рассмотрим функцию . Тогда

.

Следовательно, по теореме Лагранжа

 

,

а значит,

.

Так как удовлетворяет условию Липшица, то оно равномерно непрерывно, а потому и непрерывно.

Пример 3. .

Решение. Покажем, что удовлетворяет условию Липшица. Действительно,

Так как , то по теореме Лагранжа

.

Поэтому при любых x, y справедливо неравенство

.

Так как удовлетворяет условию Липшица, то оно является равномерно непрерывным.

 

Пример 4. .

 

Решение. а) Покажем, что непрерывно. Действительно, если в , то числоваяпоследовательность сходится к (почему?). Тогда

при .

б) Покажем, что не является равномерно непрерывным. Пусть последовательности и заданы следующим образом:

, , , .

Тогда

при ,

но

при .

в) Так как не является равномерно непрерывным, то оно не удовлетворяет и условию Липшица.

 

Пример 5. .

Решение. а) Покажем, что не удовлетворяет условию Липшица. Допустим противное, то есть что

.

Возьмем . Так как

(1)

то , то есть , . Противоречие.

б) Покажем, что является равномерно непрерывным. Заметим, что функция является равномерно непрерывной на . Действительно, она равномерно непрерывна на по теореме Кантора и равномерно непрерывна на по теореме Лагранжа, так как при . Равномерная непрерывность функции означает, что

.

Теперь, если , то . Поэтому в силу равенства (1)

.








Дата добавления: 2015-08-30; просмотров: 4197. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия