Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Компактные множества в метрических пространствах





Определение. Подмножество К метрического пространства Х называется компактным (компактом), если из любого его покрытия открытыми множествами можно выбрать конечное покрытие.

Определение. Подмножество метрического пространства Х называется предкомпактным (в другой терминологии относительно компактным), если оно содержится в компактном подмножестве пространства Х (это равносильно тому, что его замыкание компактно).

Теорема. Подмножество компактно в Х тогда и только тогда, когда оно предкомпактно и замкнуто.

Теорема (свойство Больцано-Вейерштрасса). Подмножество К метрического пространства Х компактно тогда и только тогда, когда из любой последовательности его точек можно выбрать подпоследовательность, сходящуюся к точке из К.

Теорема. Подмножество К метрического пространства предкомпактно (компактно) тогда и только тогда, когда оно ограничено (соответственно ограничено и замкнуто).

Определение. Подмножество К метрического пространства C [ a, b ] называется равномерно ограниченным, если существует такая константа С, что .

Определение. Подмножество К метрического пространства C [ a, b ] называется равностепенно непрерывным, если

.

Теорема Арцела-Асколи. Подмножество К пространства C [ a, b ] предкомпактно тогда и только тогда, когда оно равномерно ограничено и равностепенно непрерывно.

Теорема. Подмножество К пространства предкомпактно тогда и только тогда, когда выполняются следующие два условия:

1) ;

2) .

 

 

2.5.1. Является ли данное множество М а) компактым, б) пред-компактным в пространстве (таблица 2.5.1)?

Таблица 2.5.1

 

Вариант М
 
 
 
 
 
 
 
 
 
 

 

2.5.2. Выяснить, является ли множество М предкомпактным, компактным в (таблица 2.5.2).

 

Таблица 2.5.2

 

Вариант М Вариант М
   
   
   
   
   

2.5.3. Определить, является ли данное множество М предком-пактным в пространстве (таблица 2.5.3).

 

Таблица 2.5.3

 

Вариант р М
   
   
   
   
   
   
   
   
   
   






Дата добавления: 2015-08-30; просмотров: 2054. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия