Студопедия — Примеры решения типовых задач. 1. Выяснить, являются ли данные множества предкомпактными, компактными в .
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения типовых задач. 1. Выяснить, являются ли данные множества предкомпактными, компактными в .






1. Выяснить, являются ли данные множества предкомпактными, компактными в .

 

Пример 1. а) ;

б) .

Решение. а) Проверим для множества М условия теоремы Арцела-Асколи. Рассмотрим функцию . Пусть . Функция непрерывна на и . Множество является компактом. По теореме Вейерштрасса функция ограничена на , т.е.

.

Значит, М равномерно ограничено (впрочем, легко проверить и непосредственно, что при наших условиях ).

Проверим равностепенную непрерывность множества М. Функция равномерно непрерывна на множестве по теореме Кантора. Если обозначить через произвольную точку из К, то равномерная непрерывность означает, что , что , таких, что , и , таких, что (ρ обозначает евклидову метрику в К), справедливо неравенство

.

Отсюда следует равностепенная непрерывность множества М (см. определение). Значит, по теореме Арцела-Асколи М предкомпактно.

Для доказательства компактности множества М теперь достаточно проверить его замкнутость в . Но это тоже следует из непрерывности функции . В самом деле, если х −предельная точка множества М, то найдется последовательность функций из М, сходящаяся к х в . По теореме Больцано-Вейерштрасса из последовательности точек множества К можно выбрать подпос-ледовательность, которую мы тоже обозначим , сходящуюся к точке . Тогда поточечно , а потому в силу единственности предела . Итак, М – компакт.

б) Так как М 1 М, то множество М 1 предкомпактно в силу а). Но М 1 не является компактом, так как не замкнуто в . Действительно, функции принадлежат , но предел этой последовательности не принадлежит множеству М 1.

 

Пример 2. .

 

Решение. 1 способ. Это множество является равномерно ограниченным, но не является равностепенно непрерывным. Действительно, возьмем . Тогда найдется такое натуральное n, что точки и удовлетворяют неравенству , но в то же время . Значит, по теореме Арцела-Асколи М не является предкомпактным, а потому и компактным множеством.

2 способ. Множество М не является предкомпактным, так как из него нельзя извлечь подпоследовательность, сходящуюся в (а потому его замыкание не обладает свойством Больцано-Вейерштрасса). Действительно, все подпоследовательности множества М сходятся к разрывной функции (какой?).

 

Пример 3. .

 

Решение. Множество М равномерно ограничено, так как

.

Множество М равностепенно непрерывно, так как и , таких, что , имеем

.

Значит, по теореме Арцела-Асколи М предкомпактно.

Покажем, что М содержит все свои точки прикосновения. Пусть х есть точка прикосновения множества М. Тогда найдутся такие числа , что равномерно на . В силу периодичности синуса можно считать, что . При этом промежуток удобно отождествлять с факторгруппой , то есть с единичной окружностью, наделенной естественной топологией, в которой она компактна. (Отличие здесь в том, что если последовательность в сходится к , то в этой топологии предел считается равным 0). Заметим, что в этой топологии существует . Действительно, если допустить противное, то найдутся две подпоследовательности и последовательности , имеющие различные пределы и соответственно. Но тогда при всех t, откуда . Противоречие. Следовательно, . Значит, М – замкнутое множество, откуда следует, что М – компакт.

Пример 4. .

 

Решение. Данное множество не является равностепенно непрерывным. Действительно, возьмем . Тогда найдется такое натуральное n, что точки и удовлетворяют неравенству , но в то же время выполняется неравенство . Значит, по теореме Арцела-Асколи М не является предкомпактным, а потому и компактным множеством.

 

2. Является ли множество М предкомпактным в ?

 

Пример 1. .

 

Решение. Проверим критерий предкомпактности в .

1) Множество М удовлетворяет первому условию, поскольку, как легко проверить, , а потому

.

2) Так как ряд сходится, то его остаток стремится к нулю, то есть

.

Поэтому

.

Значит, множество М предкомпактно.








Дата добавления: 2015-08-30; просмотров: 4778. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия