Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывные случайные величины





До сих пор мы предполагали, что каждое из событий Z характеризуется конечным множеством состояний (z1, z2,... zn) и вероятностями пребывания в каждом из них:

Pz1, Pz2,..., Pzn;

Однако во многих случаях события могут принимать любые состояния из некоторого диапазона. Так, например, доходность какого-либо мероприятия может характеризоваться любым числовым значением ожидаемой прибыли.

В этом случае Z будет являться непрерывной случайной величиной, пространством возможных состояний которой будет весь диапазон допустимых её значений:

Z = {z | a £ z £ b},

содержащий бесконечное множество точек. При этом уже нельзя говорить о вероятности отдельного состояния, так как при бесконечно большом их числе вес каждого будет равен нулю. Поэтому распределение вероятностей для непрерывной случайной величины определяется иначе, чем в дискретном случае и для их характеристики используются: функции распределения вероятностей; плотности распределения вероятностей.

Функция распределения вероятностей F(x) определяет вероятность того, что значения случайной величины z не превзойдут некоторого x, то есть

F(x) = P(-¥ < z £ x)

Эта функция обладает такими свойствами, как: F(x) – неубывающая функция,
F(-¥) =0, F(¥) =1. Общий вид функции, удовлетворяющий отмеченным свойствам, графически можно представить в виде, аналогичном приведенному на рис.8.1. Зная функцию распределения вероятностей можно вычислить вероятность того, что значение случайной величины z окажется внутри малого интервала от x до x + Dx

 

Первый сомножитель в правой части последнего выражения есть значение вероятности, приходящаяся на единицу длины участка Dx. Предел этого отношения при представляет собой производную функции распределения

и называется плотностью распределения вероятностей. Отметим основные свойства функции f(x):

a).

т.е. интеграл плотности распределения вероятностей даёт вероятность того, что случайная величина z принимает значения, лежащие в интервале от a до b;

б).

откуда следует, что площадь, ограниченная кривой f(x) и осью абсцисс, всегда равна единице.







Дата добавления: 2015-08-31; просмотров: 493. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия