Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример построения простейшей диаграммы влияния





Вернёмся к ранее рассмотренному примеру с плантацией «яблочного Джека». Оценив ранее состояние своего дерева, Джек ставит перед собой цель принятия решения об инвестировании материальных средств в лечение дерева.

Для решения этой задачи добавим к исходной байесовской сети доверия ещё три вершины шансов, полностью аналогичных тем, что уже были в байесовской сети доверия. Новые вершины: “ Болеет1”, “ Засохло1” и “ Облетело1” являются точно такими же как и их аналоги в предыдущей модели, но только отображают будущий момент времени (момент сбора урожая).

Рис.7.1. Расширенная модель БСД на момент уборки урожая.

Новые вершины имеют те же состояния, что и старые. В новой модели ожидаются зависимости от “ Болеет ” к “ Болеет1 ” и от “ Засохло ” к “ Засохло1 ”. Это связано с тем, что если дерево болеет сейчас, очень вероятно, что оно будет болеть и в будущем.

Конечно, сила зависимости зависит от того, как далеко в будущее мы хотим заглянуть. Можно было бы установить зависимость и от “ Облетело ” к “ Облетело1 ”, но в данной модели, для ее упрощения, мы этого делать не будем. «Яблочный Джек» имеет возможность сделать что-либо для решения проблемы опадания листвы со своих плодовых деревьев и, тем самым, сохранить урожай:

· Он может попытаться лечить дерево, проводя его опрыскивание, чтобы избавить от болезни.

· С другой стороны, если он считает, что опадание листвы вызвано засухой, он может сохранить свои деньги и просто ждать дождя.

Действия, связанные с лечением дерева, могут быть добавлены в нашу модель в виде вершины решения и при этом мы от байесовской сети доверия переходим к диаграмме влияния, которая будет иметь вид:

Рис.7.2. Преобразование БСД в диаграмму влияния добавлением в нее вершины решения.

При этом случайная переменная решения, соответствующая вершине “ Лечение” может иметь два состояния (“ Лечение ” = «да», “ Лечение ” = «нет»). Как видно из рис.7.2, диаграмма влияния смоделирована со стрелкой от “ Лечение” к “ Болеет1”. Это вызвано тем, что лечение повлияет на будущее здоровье дерева.

Перед тем как завершить диаграмму влияния, необходимо определить функцию полезности, позволяющую вычислить пользу от принятия решения. Это делается добавлением к диаграмме влияния вершин полезности, каждая из которых определяет вклад в общую выгодность. При этом изменённая диаграмма влияния примет вид, приведённый на рис.7.3.

Рис.7.3. Диаграмма влияния с добавленными вершинами полезности.

Вершина “ Затраты ” содержит информацию о затратах на лечение деревьев, а вершина “ Урожай ” представляет собой доходы, полученные от сбора урожая. При этом естественно, что количество и качество урожая зависит от состояния деревьев. Поэтому вершина “ Урожай ” зависит от состояния вершины «Болеет1», указывая, что продукция зависит от здоровья дерева в момент сбора урожая.

Модель, представленная на рис.7.3, даёт законченное качественное представление диаграммы влияния. Для получения количественного представления необходимо построить таблицу условных вероятностей для каждой из вершин шансов и задать таблицы доходности для каждой из вершин полезности. Вершины принятия решения не имеют таблиц условных вероятностей.

При этом таблицы условных вероятностей для p (“ Болеет ”), p (“ Засохло ”) и p (“ Облетело ” | “ Болеет ”, “ Засохло ”),будут иметь тот же вид, что и в примере предыдущей главы. Таблица же условных вероятностей для p (“ Облетело1 ” | “ Болеет1”, “ Засохло1 ”), будет аналогична p (“ Облетело ” | “ Болеет ”, “ Засохло ”).

Таблицы условных вероятностей для всех остальных состояний должны быть получены из анализа предметной области и выявления знаний от экспертов. Для рассматриваемого примера они могут иметь вид аналогичный, приведенным в табл. 7.1, 7.2, 7,3.

 

Таблица 7.1
Таблица условных вероятностей p (“ Болеет1 ” | “ Болеет ”, “ Лечение ”)
  Лечение ” = «да» Лечение ” = «нет»
  Болеет ” = «болеет» Болеет ” = «нет» Болеет ” = «болеет» Болеет ” = «нет»
Болеет1 ” = «да» 0,20 0,01 0,99 0,02
Болеет1 ” = «нет» 0,80 0,99 0,01 0,98

 

Таблица 7.2
Таблица условных вероятностей p (“ Засохло1 ” | “ Засохло ”)
  Засохло ” = «засохло» Засохло ” = «нет»
Засохло1 ” = «да» 0,60 0,05
Засохло1 ” = «нет» 0,40 0,95

Следующие таблицы показывают как могут быть определены для рассматриваемого случая таблицы выгодности. В них функции полезности выражаются в виде стоимостных показателей и задаются в одних и тех же условных единицах.

Таблица 7.3
Таблицы выгодности для вершин полезности
U(“ Урожай ”)   U(“ Затраты ”)
Болеет1 ” = «да» Болеет1 ” = «нет»   Лечение ” = «да» Лечение ” = «нет»
         

Цель диаграммы влияния – вычислить действие, связанное с вершиной “ Лечение ” для того, чтобы получить наибольшую ожидаемую выгодность. Даже в таком простом примере ручной расчёт довольно-таки сложен и поэтому возникает необходимость работы с ЭС, такой, например, как “Hugin”. Ответом для принятия решения об инвестировании лечения будет вычисление общей функции полезности при условии, что p (“ Облетело ” = «облетело») = 1.







Дата добавления: 2015-08-31; просмотров: 847. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия