Экспертные системы, использующие субъективные вероятности
Для того, чтобы использовать теорию вероятности для представления неопределённостей, разработчики ЭС должны получить все априорные и условные вероятности от экспертов. Хотя они предполагают условную независимость для уменьшения числа требуемых вероятностных оценок, все же число оценок, требуемых для них, остаётся достаточно большим. Таким образом не является сюрпризом, что мало ЭС используют теорию субъективных вероятностей в прямом виде и многие из этих систем могут решать только относительно не сложные проблемы. В 70-е годы была разработана компьютерная программа для диагностики, использующая статистические данные. Эта программа избежала комбинаторного взрыва путём введения ограничений до 7 диагнозов (уровней). Более современная ЭС Pathfinder также использует теорию субъективных вероятностей. Без предположения условной независимости среди симптомов Pathfinder диагностирует 63 заболевания лимфы с 110 симптомами. Эта система использует диаграммы влияния. Это относительно новый инструмент, позволяющий байесовским исследователям и аналитикам по принятию решений визуализовать вероятностные зависимости в принятии решения и определить информационное состояние, для которых предполагается независимость. IDES — другая экспертная система, основанная на диаграммах влияния, которая была разработана в Беркли в 1990г. Основная сложность в реализации субъективных вероятностей – это огромное число вероятностей, которые должны быть получены для построения БЗ. Если, для примера, некоторая область медицинских диагнозов имеет 100 диагнозов и 700 симптомов, то, по крайне мере, 70100 значений вероятностей (70000 условных + 100 априорных) должны быть получены. Кроме того в старых системах необходимо было условие независимости симптомов, что редко в реальности выполняется. Сети доверия — это новый инструмент для решения перечисленных проблем, в которых регулируются информационные потоки. В настоящее время Пиэрл (Pearl) показал, что при представлении информации в базе знаний при помощи байесовских сетей можно создать согласованную и непротиворечивую вероятностную базу знаний без необходимости в предположении условной независимости.
БАЙЕСОВСКИЕ СЕТИ ДОВЕРИЯ КАК СРЕДСТВО РАЗРАБОТКИ ЭС Основные понятия и определения Байесовские сети доверия – Bayesian Belief Network – используются в тех областях, которые характеризуются наследованной неопределённостью. Эта неопределённость может возникать вследствие: · неполного понимания предметной области; · неполных знаний; · когда задача характеризуется случайностью. Таким образом, байесовские сети доверия (БСД) применяют для моделирования ситуаций, содержащих неопределённость в некотором смысле. Для байесовских сетей доверия иногда используется ещё одно название причинно-следственная сеть, в которых случайные события соединены причинно-следственными связями. Соединения методом причин и следствий позволяют более просто оценивать вероятности событий. В реальном мире оценивание наиболее часто делается в направлении от “наблюдателя” к “наблюдению”, или от “эффекта” к “следствию”, которое в общем случае более сложно оценить, чем направление “следствие –> эффект”, то есть в направлении от следствии.
Рассмотрим пример сети (рис.6.1), в которой вероятность пребывания вершины «e» в различных состояниях (ek) зависит от состояний (ci, dj) вершин «c» и «d» и определяется выражением: где p(ek | ci, dj) – вероятность пребывания в состоянии ek в зависимости от состояний ci, dj. Так как события, представленные вершинами «c» и «d» независимы, то p(ek | ci, dj) = p(ci) × p(dj).
Рассмотрим пример более сложной сети (рис.6.2). Данный рисунок иллюстрирует условную независимость событий. Для оценки вершин «c» и «d» используются те же выражения, что и для вычисления p(ek), тогда: , . Из этих выражений видно, что вершина «e» условно не зависит от вершин A1, A2, B1, B2, так как нет стрелок непосредственно соединяющих эти вершины. Рассмотрев эти примеры попробуем теперь более точно определить основные понятия, используемые в БСД. Байесовские сети доверия — это направленный ациклический граф, обладающий следующими свойствами: - каждая вершина представляет собой событие, описываемое случайной величиной, которая может иметь несколько состояний; - все вершины, связанные с “родительскими” определяются таблицей условных вероятностей (ТУВ) или функцией условных вероятностей (ФУВ); - для вершин без “родителей” вероятности её состояний являются безусловными (маргинальными). Другими словами, в байесовских сетях доверия вершины представляют собой случайные переменные, а дуги – вероятностные зависимости, которые определяются через таблицы условных вероятностей. Таблица условных вероятностей каждой вершины содержит вероятности состояний этой вершины при условии состояний её “родителей”.
|