Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Простейший логический вывод





Рассмотрим случай, когда все правила в экспертной системе отражаются в форме:

 

Если < H является истинной > То < E будет наблюдаться с вероятностью р >;.

 

Очевидно, если H произошло, то это правило говорит о том, что событие E происходит с вероятностью p. Но что будет, если состояние H неизвестно, а E произошло? Использование теоремы Байеса позволяет вычислить вероятность того, что H истинно. Замена «A» и «B» на «H» и «E» не существенна для формулы Байеса, но с её помощью мы можем покинуть общую теорию вероятности и перейти к анализу вероятностных вычислений в ЭС. В этом контексте:

· H – событие, заключающееся в том, что данная гипотеза верна;

· E – событие, заключающееся в том, что наступило определённое доказательство (свидетельство), которое может подтвердить правильность указанной гипотезы.

Переписывая формулу Байеса в терминах гипотез и свидетельств, получим:

.

Это равенство устанавливает связь гипотезы со свидетельством и, в то же время, наблюдаемого свидетельства с пока ещё не подтверждённой гипотезой. Эта интерпретация предполагает также определение априорной вероятности гипотезы p(H), назначаемой H до наблюдения или получения некоторого факта.

В экспертных системах вероятности, требуемые для решения некоторой проблемы, обеспечивается экспертами и запоминается в базе знаний. Эти вероятности включают:

· априорные вероятности всех возможных гипотез p(H);

· условные вероятности возникновения свидетельств при условии существования каждой из гипотез p(E | H).

Так, например, в медицинской диагностике эксперт должен задать априорные вероятности всех возможных болезней в некоторой медицинской области. Кроме того, должны быть определены условные вероятности проявления тех или иных симптомов при каждой из болезней. Условные вероятности должны быть получены для всех симптомов и болезней, предполагая, что все симптомы независимы в рамках одной болезни.

Два события E1 и E2 являются условно независимыми, если их совместная вероятность при условии некоторой гипотезы H равна произведению условных вероятностей эти событий при условии H, то есть

p(E1 E2 | H) = p(E1 | H) × p(E2 | H).

Пользователи дают ЭС информацию о наблюдениях (наличии определённых симптомов) и ЭС вычисляет p(Hi | Ej... Ek) для всех гипотез (H1,..., Hm) в свете предъявленных симптомов (Ej,..., Ek) и вероятностях, хранимых в БЗ.

Вероятность p(Hi | Ej... Ek) называется апостериорной вероятностью гипотез H i по наблюдениям (Ej,..., Ek). Эти вероятности дают сравнительное ранжирование всех возможных гипотез, то есть гипотез с ненулевыми апостериорными вероятностями. Результатом вывода ЭС является выбор гипотезы с наибольшей вероятностью.

Однако, приведённая выше формула Байеса ограничена в том, что каждое свидетельство влияет только на одну гипотезу. Можно обобщить это выражение на случай множественных гипотез (H1,..., Hm) и множественных свидетельств (E1,..., En). Вероятности каждой из гипотез при условии возникновения некоторого конкретного свидетельства E можно определить из выражения:

.

а в случае множественных свидетельств:

.

К сожалению данное выражение имеет ряд недостатков. Так, знаменатель требует от нас знания условных вероятностей всех возможных комбинаций свидетельств и гипотез, что делает правило Байеса малопригодным для ряда приложений. Однако в тех случаях когда возможно предположить условную независимость свидетельств, правило Байеса можно привести к более простому виду:

.

Вместе с тем предположения о независимости событий в ряде случаев подавляют точности суждений и свидетельств в ЭС.







Дата добавления: 2015-08-31; просмотров: 481. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия