Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Байесовское оценивание.





Перед тем, как ввести теорему Байеса рассмотрим некоторые фундаментальные понятия теории вероятностей. Пусть А некоторое событие реального мира. Совокупность всех элементарных событий называется выборочным пространством или пространство событий (W). Вероятность события А, обозначается р(А) и каждая вероятностная функция р должна удовлетворять трем аксиомам:

1. Вероятность любого события А является неотрицательной, т.е.

2. Вероятность всех событий выборочного пространства равна 1, т.е.

.

3. Если k событий А1, А2, …, Аk являются взаимно независимыми (т.е. не могут подойти одновременно), то вероятность, по крайней мере, одного из этих событий равна сумме отдельных вероятностей, или

Аксиомы 1 и 2 можно объединить, что дает

.

Это утверждение показывает, что вероятность любого события находится между 0 и 1. По определению, когда р(А) = 0, то событие А никогда не произойдет. В том случае и когда р(А) = 1, то событие А должно произойти обязательно.

Дополнение к А, обозначаемое (A), содержит совокупность всех событий в W за исключением А. Т.к. А и A являются взаимонезависимыми (т.е. А È A= W), то из аксиомы 3 следует

р(А) + р(A) = р(А È A) = р( W ) = 1.

Переписывая это равенство в виде р(A) = 1 – р(А), мы получает путь для получения р(A) из р(А).

Предположим теперь, что В Î W некоторое другое событие. Тогда вероятность того, что произойдет А при условии, что произошло В записывается в виде р(А | B) и называется условной вероятностью события А при заданном событии В.

Вероятность того, что оба события А и В произойдут р(А Ç В ) называется совместной вероятностью событий А и В. Условная вероятность р(А|B) равна отношению совместной вероятности р(А Ç В) к вероятности события В, при условии, что она не равна 0, т. е.

Аналогично условная вероятность события В при условии А, обозначаемая р(В|А) равна:

и таким образом

.

Так, как совместная вероятность коммутативна (т.е. от перестановки мест сумма не меняется), то

.

Подставляя это равенство в ранее полученное выражение для условной вероятности р(А| В) получим правило Байеса

.

В ряде случае наше знание того, что произошло событие В, не влияет на вероятность события А (или наоборот А на В). Другими словами, вероятность события А не зависит от того, что произошло или нет событие В, так что

р(А | В) = р(А) и р(В | А) = р(В).

В этом случае говорят, что события А и В являются независимыми.







Дата добавления: 2015-08-31; просмотров: 505. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия